论文标题

第一原理理论的狄拉克半学CD $ _3 $ AS $ _2 $在Zeeman磁场下

First principles theory of Dirac semimetal Cd$_3$As$_2$ under Zeeman magnetic field

论文作者

Baidya, Santu, Vanderbilt, David

论文摘要

时间反转破裂的Weyl半法最近引起了很多关注,但是它们的行为的某些方面,包括其费米表面拓扑的演变和具有Fermi-Level位置的异常霍尔电导率,但仍未被散布。获得此类材料的有前途的途径可能是从非磁性狄拉克半学开始,并通过磁性掺杂或磁接近度打破时间反转对称性。在这里,我们将基于第一原理密度实用的计算和随后的CD $ _ {3} $的低能建模为$ _ {2} $,在Zeeman Field apply and symeman Fields apply aff insymen axpriry axkis的情况下。我们澄清了如何将每个四个$ - $折叠的变性狄拉克节点分为四个Weyl节点,两个带有手性$ \ pm的$ \ pm 1 $和两个具有手性$ \ pm 2 $的高阶节点。使用最小的\ kDOTP模型哈密顿量的参数适合第一原理计算,我们详细介绍了费米表面的演变及其Chern数字,因为在固定Zeeman场的Weyl节点范围内扫描了Fermi能量。我们还计算了固有的异常霍尔电导率,这是Fermi级位置的函数,找到了特征性的倒数结构。 CD $ _ {3} $ as $ _ {2} $特别适合这样一项研究,因为它的移动性很高,但此处揭示的定性行为也适用于其他Dirac半决赛。

Time-reversal broken Weyl semimetals have attracted much attention recently, but certain aspects of their behavior, including the evolution of their Fermi surface topology and anomalous Hall conductivity with Fermi-level position, have remained underexplored. A promising route to obtain such materials may be to start with a nonmagnetic Dirac semimetal and break time-reversal symmetry via magnetic doping or magnetic proximity. Here we explore this scenario in the case of the Dirac semimetal Cd$_{3}$As$_{2}$, based on first-principles density-functional calculations and subsequent low-energy modeling of Cd$_{3}$As$_{2}$ in the presence of a Zeeman field applied along the symmetry axis. We clarify how each four$-$fold degenerate Dirac node splits into four Weyl nodes, two with chirality $\pm 1$ and two higher-order nodes with chirality $\pm 2$. Using a minimal \kdotp model Hamiltonian whose parameters are fit to the first-principles calculations, we detail the evolution of the Fermi surfaces and their Chern numbers as the Fermi energy is scanned across the region of the Weyl nodes at fixed Zeeman field. We also compute the intrinsic anomalous Hall conductivity as a function of Fermi-level position, finding a characteristic inverted-dome structure. Cd$_{3}$As$_{2}$ is especially well suited to such a study because of its high mobility, but the qualitative behavior revealed here should be applicable to other Dirac semimetals as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源