论文标题
lie superalgebra $ \ mathfrak {q}(3)$的扩展Quiver
Extension Quiver for Lie Superalgebra $\mathfrak{q}(3)$
论文作者
论文摘要
我们通过提供其扩展Quivers来描述有限维$ \ mathfrak {q}(3)$ - 超模型的所有类别的所有块。我们还获得了两个有关$ \ mathfrak {q}(n)$的表示形式的一般结果:我们表明,$ \ mathfrak {q}(q}(n)$的标准块的分机是从$ \ m \ m \ m mathfrak {q}(q}(n-1)$的主要块中获得的,通过识别Quiver and prove a'''''''''''''''''''''''''''''''''''''''''''''''''''''''' $ \ mathfrak {q}(n)$。后一个结果用于计算$ \ mathfrak {q}(3)$投影盖的根部过滤。
We describe all blocks of the category of finite-dimensional $\mathfrak{q}(3)$-supermodules by providing their extension quivers. We also obtain two general results about the representation of $\mathfrak{q}(n)$: we show that the Ext quiver of the standard block of $\mathfrak{q}(n)$ is obtained from the principal block of $\mathfrak{q}(n-1)$ by identifying certain vertices of the quiver and prove a ''virtual'' BGG-reciprocity for $\mathfrak{q}(n)$. The latter result is used to compute the radical filtrations of $\mathfrak{q}(3)$ projective covers.