论文标题

亚里士多德三段论的概率传播规则

Probability propagation rules for Aristotelian syllogisms

论文作者

Pfeifer, Niki, Sanfilippo, Giuseppe

论文摘要

我们提出了基于(分类)亚里士多德三段论的基于连贯的概率语义和概率传播规则。为了将亚里士多德的三段论作为概率推断,我们通过适当的精确和不精确的有条件概率评估来解释基本的三段论句子类型A,E,I,o。然后,我们定义了对于三段论的有效性所必需的概率推断和概率概念的有效性。基于De Finetti的基本定理对条件概率的概括,我们分别研究了三段图I,II和III的参数形式的连贯概率传播规则。这些结果允许在这三个数字中表明,每个传统上有效的三段论在我们基于连贯的概率语义中也有效。此外,我们通过适当的默认值和否定默认设置来解释基本的三段音句子类型。因此,我们建造了一座桥梁,从我们的亚里士多德三段论的概率语义到非单调推理。然后,我们表明,通过转换的还原不起作用,而在我们的方法中可以应用不可能的减少。最后,我们展示了如何使用所提出的概率传播规则来分析涉及通用量化器的三段论(像大多数量词一样)。

We present a coherence-based probability semantics and probability propagation rules for (categorical) Aristotelian syllogisms. For framing the Aristotelian syllogisms as probabilistic inferences, we interpret basic syllogistic sentence types A, E, I, O by suitable precise and imprecise conditional probability assessments. Then, we define validity of probabilistic inferences and probabilistic notions of the existential import which is required, for the validity of the syllogisms. Based on a generalization of de Finetti's fundamental theorem to conditional probability, we investigate the coherent probability propagation rules of argument forms of the syllogistic Figures I, II, and III, respectively. These results allow to show, for all three figures, that each traditionally valid syllogism is also valid in our coherence-based probability semantics. Moreover, we interpret the basic syllogistic sentence types by suitable defaults and negated defaults. Thereby, we build a bridge from our probability semantics of Aristotelian syllogisms to nonmonotonic reasoning. Then we show that reductio by conversion does not work while reductio ad impossibile can be applied in our approach. Finally, we show how the proposed probability propagation rules can be used to analyze syllogisms involving generalized quantifiers (like Most).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源