论文标题

低复杂性几何形状

Low-Complexity Geometric Shaping

论文作者

Mirani, Ali, Agrell, Erik, Karlsson, Magnus

论文摘要

由于调制和解码复杂性,通常认为通过几何形状接近香农的容量,这是具有挑战性的,需要查找表存储星座点和星座位标签。为了克服这些挑战,在本文中,我们研究了基于多维欧几里得空间中的基于晶格的几何形状调制格式。我们描述并评估快速和低复杂性调制和解调算法,这些算法使这些调制格式实用,即使具有超过$ 10^{28} $点的极高星座尺寸也是如此。将这些星座的未编码位错误率性能与添加剂白色高斯噪声和非线性光纤通道中的常规QAM格式进行了比较。在2位/SYM/极化的光谱效率下,与4-QAM格式相比,在硬否决前向前误差校正阈值$ 2.26 \ times 10^{ - 4} $上显示了传输的提高超过38%。

Approaching Shannon's capacity via geometric shaping has usually been regarded as challenging due to modulation and demodulation complexity, requiring look-up tables to store the constellation points and constellation bit labeling. To overcome these challenges, in this paper, we study lattice-based geometrically shaped modulation formats in multidimensional Euclidean space. We describe and evaluate fast and low complexity modulation and demodulation algorithms that make these modulation formats practical, even with extremely high constellation sizes with more than $10^{28}$ points. The uncoded bit error rate performance of these constellations is compared with the conventional QAM formats in the additive white Gaussian noise and nonlinear fiber channels. At a spectral efficiency of 2 bits/sym/polarization, compared with 4-QAM format, transmission reach improvement of more than 38% is shown at the hard-decision forward error correction threshold of $2.26\times 10^{-4}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源