论文标题

具有与闭合表面三角剖分有关的箭射颤音,最多有两个穿刺

Quivers with potentials associated to triangulations of closed surfaces with at most two punctures

论文作者

Geuenich, Jan, Labardini-Fragoso, Daniel, Miranda-Olvera, José Luis

论文摘要

在Geiss-Labardini-Schröer打开的情况下,我们解决了由表面三角形产生的质量质量的分类问题。也就是说,对于曾经由阳性属的闭合表面,我们表明,任何三角剖分的颤动都可以无限地承认,成对不恰好正确的右等量的许多非分类电势。我们这样做是通过表明通过添加来自三角形的3个循环获得的电势和穿刺周围循环的固定功率,在翻转和QP-Mutations中表现得很好。对于阳性属的两次闭合表面,我们证明,任何三角剖分的颤动都完全承认一个非排分潜力,直至弱右等效性,从而确认了上述作者的猜想的真实性。

We tackle the classification problem of non-degenerate potentials for quivers arising from triangulations of surfaces in the cases left open by Geiss-Labardini-Schröer. Namely, for once-punctured closed surfaces of positive genus, we show that the quiver of any triangulation admits infinitely many non-degenerate potentials that are pairwise not weakly right-equivalent; we do so by showing that the potentials obtained by adding the 3-cycles coming from triangles and a fixed power of the cycle surrounding the puncture are well behaved under flips and QP-mutations. For twice-punctured closed surfaces of positive genus, we prove that the quiver of any triangulation admits exactly one non-degenerate potential up to weak right-equivalence, thus confirming the veracity of a conjecture of the aforementioned authors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源