论文标题
独立的原子模型耦合通道计算加强了原子间库仑衰减的情况,作为慢速o $ $^{3+} $ - NE $ _2 $ collisions中的亚抑制反应通道
Independent-atom-model coupled-channel calculations strengthen the case for interatomic Coulomb decay as a subdominant reaction channel in slow O$^{3+}$-Ne$_2$ collisions
论文作者
论文摘要
我们报告了2.81 kev/amu li $^{3+} $和o $^{3+} $ ion与霓虹灯二聚体的碰撞的电子删除计算。该靶标被描述为固定在二聚体平衡键长的两个独立的霓虹灯原子,它们的电子分别受到时间依赖性的裸露和筛选的库仑电位,分别是经典移动的li $^{3+} $和o $^{3+} $ packineile ions。考虑了二聚体相对于直线弹丸轨迹的三个相互垂直的取向,并考虑了两个离子 - 原子子系统的碰撞事件,将撞击参数组合为撞击参数时尚,并进行方向平衡,以计算离子二聚体系统的概率和横切。耦合通道双中心生成器方法用于解决离子原子碰撞问题。我们将离子二聚体分析集中在一电子和两电子去除过程上,这些过程可能与原子间库仑衰变,库仑爆炸和辐射电荷转移有关。我们发现,计算出的相对收益率与o $^{3+} $ - ne $ _2 $碰撞的最新实验数据是公平的一致性,如果我们用筛选的库仑代表弹丸,但明显地不同意裸露的库仑潜能,即li $^{3+} $影响。特别是,我们的计算表明,原子质库仑衰减仅在前一种情况下是一个重要的反应通道,因为捕获NE($ 2S $)电子以形成氢气li $^{2+} $。
We report on electron removal calculations for 2.81 keV/amu Li$^{3+}$ and O$^{3+}$ ion collisions with neon dimers. The target is described as two independent neon atoms fixed at the dimer's equilibrium bond length, whose electrons are subjected to the time-dependent bare and screened Coulomb potentials of the classically moving Li$^{3+}$ and O$^{3+}$ projectile ions, respectively. Three mutually perpendicular orientations of the dimer with respect to the rectilinear projectile trajectories are considered and collision events for the two ion-atom subsystems are combined in an impact parameter by impact parameter fashion and are orientation-averaged to calculate probabilities and cross sections for the ion-dimer system. The coupled-channel two-center basis generator method is used to solve the ion-atom collision problems. We concentrate the ion-dimer analysis on one-electron and two-electron removal processes which can be associated with interatomic Coulomb decay, Coulomb explosion, and radiative charge transfer. We find that the calculated relative yields are in fair agreement with recent experimental data for O$^{3+}$-Ne$_2$ collisions if we represent the projectile by a screened Coulomb potential, but disagree markedly for a bare Coulomb potential, i.e., for Li$^{3+}$ impact. In particular, our calculations suggest that interatomic Coulomb decay is a significant reaction channel in the former case only, since capture of a Ne($2s$) electron to form hydrogenlike Li$^{2+}$ is unlikely.