论文标题
关于有色因解
On Colored Factorizations
论文作者
论文摘要
我们研究一个正整数的因素化数量,其中分解部分是不同的颜色(或种类)。递归或显式公式是针对无序和有序的情况,最多和完全确切的l颜色的独特和不弥补的因素化的。
We study the number of factorizations of a positive integer, where the parts of the factorization are of l different colors (or kinds). Recursive or explicit formulas are derived for the case of unordered and ordered, distinct and non-distinct factorizations with at most and exactly l colors.