论文标题
学习归纳不变的边界
Learning the Boundary of Inductive Invariants
论文作者
论文摘要
我们研究不变推理的复杂性及其与确切概念学习的联系。我们定义了一个不变的条件及其几何形状,称为围栏条件,该条件允许从精确的概念学习中应用理论结果来回答不变推理理论中的空旷问题。条件需要不变的边界 - 与不变的锤距离的状态是一个 - 一个 - 可以以少数步骤从坏状态往后延伸。使用此条件,我们获得了基于插值的不变推理算法的第一个多项式复杂性结果,有效地推断了单调DNF不变性,并可以访问SAT求解器作为Oracle。我们进一步利用Bshouty的开创性结果,以学习有效地推断出较大的句法类别的不变性类DNF的不变性。最后,我们考虑程序转换下的推论的鲁棒性。我们表明,一些简单的转换保留了围栏条件,并且对更复杂的转换很敏感。
We study the complexity of invariant inference and its connections to exact concept learning. We define a condition on invariants and their geometry, called the fence condition, which permits applying theoretical results from exact concept learning to answer open problems in invariant inference theory. The condition requires the invariant's boundary---the states whose Hamming distance from the invariant is one---to be backwards reachable from the bad states in a small number of steps. Using this condition, we obtain the first polynomial complexity result for an interpolation-based invariant inference algorithm, efficiently inferring monotone DNF invariants with access to a SAT solver as an oracle. We further harness Bshouty's seminal result in concept learning to efficiently infer invariants of a larger syntactic class of invariants beyond monotone DNF. Lastly, we consider the robustness of inference under program transformations. We show that some simple transformations preserve the fence condition, and that it is sensitive to more complex transformations.