论文标题
通过一声的上下文感知域的适应在线视觉跟踪
Online Visual Tracking with One-Shot Context-Aware Domain Adaptation
论文作者
论文摘要
在线学习政策使视觉跟踪器通过学习域特异性提示对不同的扭曲更加强大。但是,采用该政策的追踪器无法完全利用背景区域的歧视性环境。此外,由于每个时间步骤缺乏足够的数据,在线学习方法还可以使跟踪器容易与背景区域过度合适。在本文中,我们提出了一种域适应方法来加强语义背景背景的贡献。域的适应方法仅使用现成的深层模型进行了回信。提出的方法的强度来自其处理严重遮挡和背景混乱挑战的歧视能力。我们进一步引入了一种成本敏感的损失,以减轻非语义背景候选人在语义候选人中的主导地位,从而处理数据不平衡问题。实验结果表明,与最先进的跟踪器相比,我们的跟踪器以实时速度实现竞争成果。
Online learning policy makes visual trackers more robust against different distortions through learning domain-specific cues. However, the trackers adopting this policy fail to fully leverage the discriminative context of the background areas. Moreover, owing to the lack of sufficient data at each time step, the online learning approach can also make the trackers prone to over-fitting to the background regions. In this paper, we propose a domain adaptation approach to strengthen the contributions of the semantic background context. The domain adaptation approach is backboned with only an off-the-shelf deep model. The strength of the proposed approach comes from its discriminative ability to handle severe occlusion and background clutter challenges. We further introduce a cost-sensitive loss alleviating the dominance of non-semantic background candidates over the semantic candidates, thereby dealing with the data imbalance issue. Experimental results demonstrate that our tracker achieves competitive results at real-time speed compared to the state-of-the-art trackers.