论文标题

wela-vae:使用弱标签学习替代删除表示

WeLa-VAE: Learning Alternative Disentangled Representations Using Weak Labels

论文作者

Margonis, Vasilis, Davvetas, Athanasios, Klampanos, Iraklis A.

论文摘要

在没有监督或归纳偏见的情况下学习解开表示,通常会导致无解释或不良表示。另一方面,严格的监督需要详细了解真正的生成因素,这并非总是可能的。在本文中,我们考虑通过高级标签的弱监督,这些标签被认为与地面真相因素没有明确相关。这样的标签虽然更容易获取,但也可以用作算法的归纳偏见,以了解更多可解释或替代性的分离表示。为此,我们提出了WELA-VAE,这是一个变异推理框架,其中观测和标签共享相同的潜在变量,涉及改进的变异下限和总相关正则化的最大化。我们的方法是TCVAE的概括,仅添加了一个额外的超参数。我们在由笛卡尔坐标生成的数据集上进行实验,我们表明,尽管TCVAE学习了分解的笛卡尔表示,但鉴于距离和角度的弱标记,Wela-Vae能够学习并解散极性表示。这是无需精制标签或必须调整层,优化参数或总相关超参数的数量而实现的。

Learning disentangled representations without supervision or inductive biases, often leads to non-interpretable or undesirable representations. On the other hand, strict supervision requires detailed knowledge of the true generative factors, which is not always possible. In this paper, we consider weak supervision by means of high-level labels that are not assumed to be explicitly related to the ground truth factors. Such labels, while being easier to acquire, can also be used as inductive biases for algorithms to learn more interpretable or alternative disentangled representations. To this end, we propose WeLa-VAE, a variational inference framework where observations and labels share the same latent variables, which involves the maximization of a modified variational lower bound and total correlation regularization. Our method is a generalization of TCVAE, adding only one extra hyperparameter. We experiment on a dataset generated by Cartesian coordinates and we show that, while a TCVAE learns a factorized Cartesian representation, given weak labels of distance and angle, WeLa-VAE is able to learn and disentangle a polar representation. This is achieved without the need of refined labels or having to adjust the number of layers, the optimization parameters, or the total correlation hyperparameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源