论文标题

PNEN:金字塔非本地增强网络

PNEN: Pyramid Non-Local Enhanced Networks

论文作者

Zhu, Feida, Fang, Chaowei, Ma, Kai-Kuang

论文摘要

为低级图像处理任务提出的现有神经网络通常是通过堆叠内核大小有限的卷积层来实现的。每个卷积层仅涉及到本地小社区的上下文信息。当采用更多卷积层时,可以探索更多的上下文特征。但是,充分利用远程依赖性是困难和昂贵的。我们提出了一个新型的非本地模块,金字塔非本地块,以在每个像素和所有像素之间建立连接。所提出的模块能够有效利用低级结构不同尺度之间的成对依赖性。通过首先学习具有完整分辨率的查询功能图和带有缩小分辨率的参考特征图的金字塔来实现目标。然后利用与多尺度参考特征的相关性来增强像素级特征表示。考虑记忆消耗和计算成本,计算过程是经济的。基于提出的模块,我们设计了一个金字塔非本地增强网络,用于边缘保留图像平滑,该网络在模仿三种经典图像平滑算法时实现了最新的性能。此外,金字塔非本地块可以直接合并到卷积神经网络中,以进行其他图像恢复任务。我们将其集成到两种现有的方法中,用于图像denoising和单个图像超分辨率,从而始终如一地提高了性能。

Existing neural networks proposed for low-level image processing tasks are usually implemented by stacking convolution layers with limited kernel size. Every convolution layer merely involves in context information from a small local neighborhood. More contextual features can be explored as more convolution layers are adopted. However it is difficult and costly to take full advantage of long-range dependencies. We propose a novel non-local module, Pyramid Non-local Block, to build up connection between every pixel and all remain pixels. The proposed module is capable of efficiently exploiting pairwise dependencies between different scales of low-level structures. The target is fulfilled through first learning a query feature map with full resolution and a pyramid of reference feature maps with downscaled resolutions. Then correlations with multi-scale reference features are exploited for enhancing pixel-level feature representation. The calculation procedure is economical considering memory consumption and computational cost. Based on the proposed module, we devise a Pyramid Non-local Enhanced Networks for edge-preserving image smoothing which achieves state-of-the-art performance in imitating three classical image smoothing algorithms. Additionally, the pyramid non-local block can be directly incorporated into convolution neural networks for other image restoration tasks. We integrate it into two existing methods for image denoising and single image super-resolution, achieving consistently improved performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源