论文标题
富含H2的系外行星气氛中的雾兹形成
Haze Formation in Warm H2-rich Exoplanet Atmospheres
论文作者
论文摘要
在未来几年中,新的观察能力将在线上线,将为超级星际氛围的表征提供机会。但是,许多系外行星的大气中可能存在云/危险,从而使光谱特征的振幅变为幅度。我们使用实验室模拟在800 k的高度高金属中探索光化学雾化的形成,并具有100倍和1000倍太阳能的金属性。我们发现,在模拟大气中产生的雾化颗粒,其粒径较小(20至140 nm)和相对较低的生产率(2.4 x 10-5至9.7 x 10-5 x 10-5 mg cm-3 h-1),但粒径和生产速率取决于初始气体混合物和模拟实验中使用的初始气体混合物和能源。气相质谱表明,复杂的化学过程发生在这些大气中,并产生可以进一步反应形成较大分子和固体雾剂颗粒的新气体。两个具有相似C/O比率的H2富含大气(〜0.5)产生不同的雾剂颗粒的大小,雾霾产量和气体产物,这表明大气中的元素丰度及其粘结环境都会显着影响光化学。尽管通常认为CH4是产生有机危险的,但我们的最初气体混合物中没有甲烷(CH4)。但是,我们从不同初始气体混合物实验的雾兹产量率表明,CH4既不需要产生有机危险,也不需要促进有机雾霾形成。气体产品的多样性和相对产率表明CO和N2富集了H2丰富的大气中的化学反应。
New observing capabilities coming online over the next few years will provide opportunities for characterization of exoplanet atmospheres. However, clouds/hazes could be present in the atmospheres of many exoplanets, muting the amplitude of spectral features. We use laboratory simulations to explore photochemical haze formation in H2-rich exoplanet atmospheres at 800 K with metallicity either 100 and 1000 times solar. We find that haze particles are produced in both simulated atmospheres with small particle size (20 to 140 nm) and relative low production rate (2.4 x 10-5 to 9.7 x 10-5 mg cm-3 h-1), but the particle size and production rate is dependent on the initial gas mixtures and the energy sources used in the simulation experiments. The gas phase mass spectra show that complex chemical processes happen in these atmospheres and generate new gas products that can further react to form larger molecules and solid haze particles. Two H2-rich atmospheres with similar C/O ratios (~0.5) yield different haze particles size, haze production rate, and gas products, suggesting both the elemental abundances and their bonding environments in an atmosphere can significantly affect the photochemistry. There is no methane (CH4) in our initial gas mixtures, although CH4 is often believed to be required to generate organic hazes. However, haze production rates from our experiments with different initial gas mixtures indicate that CH4 is neither required to generate organic hazes nor necessary to promote the organic haze formation. The variety and relative yield of the gas products indicate that CO and N2 enrich chemical reactions in H2-rich atmospheres.