论文标题
Bombieri-Vinogradov定理,用于短时间和小部门
A Bombieri-Vinogradov Theorem for primes in short intervals and small sectors
论文作者
论文摘要
令$ k $为$ \ mathbb {q} $的有限galois扩展名。我们以简短的间隔来计算primes,该时间间隔由$ k $的主要理想的规范表示,满足了由Hecke角色确定的小部门条件。我们还表明,从Bombieri-Vinogradov的意义上讲,此类素数在算术过程中得到了很好的分布。这扩展了杜克和科尔曼的先前工作。
Let $K$ be a finite Galois extension of $\mathbb{Q}$. We count primes in short intervals represented by the norm of a prime ideal of $K$ satisfying a small sector condition determined by Hecke characters. We also show that such primes are well-distributed in arithmetic progressions in the sense of Bombieri-Vinogradov. This extends previous work of Duke and Coleman.