论文标题

删除诱发匹配

Deletion to Induced Matching

论文作者

Kumar, Akash, Kumar, Mithilesh

论文摘要

在删除引起的匹配问题中,我们在$ n $顶点,$ m $边缘和非负整数$ k $上获得了图形$ g $ (fpt)运行时间的算法$ o^*(1.748^{k})$用于使用分支和还原策略和路径分解,以删除诱导匹配问题。我们还将工作扩展到问题的确切指数版本。

In the DELETION TO INDUCED MATCHING problem, we are given a graph $G$ on $n$ vertices, $m$ edges and a non-negative integer $k$ and asks whether there exists a set of vertices $S \subseteq V(G) $ such that $|S|\le k$ and the size of any connected component in $G-S$ is exactly 2. In this paper, we provide a fixed-parameter tractable (FPT) algorithm of running time $O^*(1.748^{k})$ for the DELETION TO INDUCED MATCHING problem using branch-and-reduce strategy and path decomposition. We also extend our work to the exact-exponential version of the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源