论文标题

人类-SARS-COV-2相互作用的多尺度统计物理

Multiscale statistical physics of the Human-SARS-CoV-2 interactome

论文作者

Ghavasieh, Arsham, Bontorin, Sebastiano, Artime, Oriol, De Domenico, Manlio

论文摘要

蛋白质 - 蛋白质相互作用(PPI)网络已被用来研究SARS-COV-2病毒蛋白对人类细胞功能的影响,对Covid-19提出了更深入的了解,并为药物重新利用策略提供了基础。但是,我们对这一病毒药物和其他病毒剂之间(DIS)相似性的了解仍然非常有限。在这里,我们将新型的冠状病毒PPI网络与45种已知病毒进行比较,从统计物理学的角度来看。我们的结果表明,诸如渗透之类的经典分析对病毒的区别特征不敏感,而生化扩散模式的分析使我们能够有意义地对病毒进行分类并定量比较其对人类蛋白质的影响。值得注意的是,当使用Gibbsian样密度矩阵表示每个系统的状态时,通过光谱熵测量的相应宏观统计特性揭示了多个尺度上病毒簇的存在。总体而言,我们的结果表明,SARS-COV-2在小尺度上表现出与SARS-COV和流感A等病毒的相似性,而在较大尺度上,它与HIV1和HTLV1等病毒表现出更大的相似性。

Protein-protein interaction (PPI) networks have been used to investigate the influence of SARS-CoV-2 viral proteins on the function of human cells, laying out a deeper understanding of COVID--19 and providing ground for drug repurposing strategies. However, our knowledge of (dis)similarities between this one and other viral agents is still very limited. Here we compare the novel coronavirus PPI network against 45 known viruses, from the perspective of statistical physics. Our results show that classic analysis such as percolation is not sensitive to the distinguishing features of viruses, whereas the analysis of biochemical spreading patterns allows us to meaningfully categorize the viruses and quantitatively compare their impact on human proteins. Remarkably, when Gibbsian-like density matrices are used to represent each system's state, the corresponding macroscopic statistical properties measured by the spectral entropy reveals the existence of clusters of viruses at multiple scales. Overall, our results indicate that SARS-CoV-2 exhibits similarities to viruses like SARS-CoV and Influenza A at small scales, while at larger scales it exhibits more similarities to viruses such as HIV1 and HTLV1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源