论文标题
点云域中有序的混乱
Orderly Disorder in Point Cloud Domain
论文作者
论文摘要
在现实世界中,测试数据中存在噪声和扭曲的分布样本。用于点云数据分析开发的现有深层网络容易过度拟合,测试数据的部分变化导致网络的不可预测行为。在本文中,我们提出了一个智能而简单的深层网络,用于使用“有序障碍”理论分析3D模型。有序的混乱是描述复杂系统中疾病的复杂结构的一种方式。我们的方法通过创建一个动态链接来寻求最稳定的模式,然后一次扔掉不稳定的模式,从而提取3D对象内部的深层图案。模式对于数据分布的变化更为强大,尤其是出现在顶层中的模式。特征是通过创新的克隆分解技术提取的,然后相互链接以形成稳定的复合模式。我们的模型减轻了消失的梯度问题,增强动态链接的传播并大大减少了参数的数量。关于挑战基准数据集的广泛实验验证了我们的光网络对分割和分类任务的优越性,尤其是在存在噪声的情况下,我们网络的性能下降少于10%,而最先进的网络无法正常工作。
In the real world, out-of-distribution samples, noise and distortions exist in test data. Existing deep networks developed for point cloud data analysis are prone to overfitting and a partial change in test data leads to unpredictable behaviour of the networks. In this paper, we propose a smart yet simple deep network for analysis of 3D models using `orderly disorder' theory. Orderly disorder is a way of describing the complex structure of disorders within complex systems. Our method extracts the deep patterns inside a 3D object via creating a dynamic link to seek the most stable patterns and at once, throws away the unstable ones. Patterns are more robust to changes in data distribution, especially those that appear in the top layers. Features are extracted via an innovative cloning decomposition technique and then linked to each other to form stable complex patterns. Our model alleviates the vanishing-gradient problem, strengthens dynamic link propagation and substantially reduces the number of parameters. Extensive experiments on challenging benchmark datasets verify the superiority of our light network on the segmentation and classification tasks, especially in the presence of noise wherein our network's performance drops less than 10% while the state-of-the-art networks fail to work.