论文标题

纠正具有不同数量的顶点的图形的非参数两样本图假设测试,并具有连接组学的应用

Correcting a Nonparametric Two-sample Graph Hypothesis Test for Graphs with Different Numbers of Vertices with Applications to Connectomics

论文作者

Alyakin, Anton A., Agterberg, Joshua, Helm, Hayden S., Priebe, Carey E.

论文摘要

随机图是具有许多应用程序的统计模型,从神经科学到社交网络分析。在某些应用程序中特别感兴趣的是测试两个随机图以产生分布的平等的问题。唐等。 (2017年)为此设置提出了测试。该测试包括通过邻接光谱嵌入(ASE)将图嵌入到低维空间中,然后基于最大平均差异使用核两样本测试。但是,如果被比较的两个图具有不等数量的顶点,则Tang等人的测试。 (2017年)可能无效。我们演示了这种无效性背后的直觉,并提出了一种校正,该校正使任何后续内核或基于距离的测试有效。我们的方法依赖于基于ASE的渐近分布的抽样。我们称这些更改的嵌入方式称为校正后的邻接光谱嵌入(情况)。我们还表明,案例是原始测试的交换性问题,并证明了通过模拟研究使用案例的测试的有效性和一致性。最后,我们将提出的测试应用于确定从不同尺度上从扩散磁共振成像(DMRI)提取的人连接组中产生分布的等效性的问题。

Random graphs are statistical models that have many applications, ranging from neuroscience to social network analysis. Of particular interest in some applications is the problem of testing two random graphs for equality of generating distributions. Tang et al. (2017) propose a test for this setting. This test consists of embedding the graph into a low-dimensional space via the adjacency spectral embedding (ASE) and subsequently using a kernel two-sample test based on the maximum mean discrepancy. However, if the two graphs being compared have an unequal number of vertices, the test of Tang et al. (2017) may not be valid. We demonstrate the intuition behind this invalidity and propose a correction that makes any subsequent kernel- or distance-based test valid. Our method relies on sampling based on the asymptotic distribution for the ASE. We call these altered embeddings the corrected adjacency spectral embeddings (CASE). We also show that CASE remedies the exchangeability problem of the original test and demonstrate the validity and consistency of the test that uses CASE via a simulation study. Lastly, we apply our proposed test to the problem of determining equivalence of generating distributions in human connectomes extracted from diffusion magnetic resonance imaging (dMRI) at different scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源