论文标题

组织病理学成像分析的无监督域的适应性图形神经网络

Graph Neural Networks for UnsupervisedDomain Adaptation of Histopathological ImageAnalytics

论文作者

Xu, Dou, Cai, Chang, Fang, Chaowei, Kong, Bin, Zhu, Jihua, Li, Zhongyu

论文摘要

注释的组织病理学图像是一个耗时的和策略密集型过程,它需要广泛认证的病理学家,以检查从细胞到组织的大规模全片图像。转移学习技术的界限已被广泛投资,以实现有限的注释。但是,当应用组织学图像的分析时,很少有人能有效地避免源训练数据集和目标数据集之间的域差异,例如不同的组织,染色外观和成像设备引起的性能下降。为此,我们为在组织病理学图像分析中无监督域适应的新方法,基于将图像嵌入特征空间中的骨架,以及一个图形的图形神经层,以将图像的监督信号带有标签。图形模型isset通过将每个图像与嵌入式特征空间中的紧密邻居连接起来。然后,使用图形神经网络从每个图像中综合特征表示。在训练阶段,具有自信推断的目标样本将用Pseudo标签动态分配。横向渗透损失函数用于用手动标记的标签和带有伪标签的目标样本来限制源样本的预测。此外,采用的最大平均多样性是为了促进域不变的特征代表句子的提取,并利用对比度学习来增强学习特征的类别歧视。在组织病理学图像分类的无监督的DO-MAIN适应的实验中,我们的Methodachieves在四个公共数据集上的最先进的表现

Annotating histopathological images is a time-consuming andlabor-intensive process, which requires broad-certificated pathologistscarefully examining large-scale whole-slide images from cells to tissues.Recent frontiers of transfer learning techniques have been widely investi-gated for image understanding tasks with limited annotations. However,when applied for the analytics of histology images, few of them can effec-tively avoid the performance degradation caused by the domain discrep-ancy between the source training dataset and the target dataset, suchas different tissues, staining appearances, and imaging devices. To thisend, we present a novel method for the unsupervised domain adaptationin histopathological image analysis, based on a backbone for embeddinginput images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels. The graph model isset up by connecting every image with its close neighbors in the embed-ded feature space. Then graph neural network is employed to synthesizenew feature representation from every image. During the training stage,target samples with confident inferences are dynamically allocated withpseudo labels. The cross-entropy loss function is used to constrain thepredictions of source samples with manually marked labels and targetsamples with pseudo labels. Furthermore, the maximum mean diversityis adopted to facilitate the extraction of domain-invariant feature repre-sentations, and contrastive learning is exploited to enhance the categorydiscrimination of learned features. In experiments of the unsupervised do-main adaptation for histopathological image classification, our methodachieves state-of-the-art performance on four public datasets

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源