论文标题

防御传输和分布级PMU数据中的对抗攻击

Defending Against Adversarial Attacks in Transmission- and Distribution-level PMU Data

论文作者

Jiang, Jun, Liu, Xuan, Wallace, Scott, Cotilla-Sanchez, Eduardo, Bass, Robert, Zhao, Xinghui

论文摘要

相量测量单元(PMU)提供了高保真数据,以提高电力电网操作的状况意识。 PMU DataStreams为广阔的状态估计,监视区域控制错误提供了信息,并实时促进事件检测。随着PMU数据变得越来越可用且越来越可靠,这些设备会在控制系统中的新角色中找到,例如补救动作方案和预警检测系统。与其他网络物理系统一样,保持数据完整性和安全性对电力系统运营商带来了重大挑战。在本文中,我们对多种机器学习技术进行了全面分析,以检测PMU数据流中的恶意数据注入。这项研究中使用的两个数据集来自两个PMU网络:跨越美国太平洋西北部三个机构的大学间,研究级分销网络,以及来自Bonneville Power Administration的公用事业传输网络。我们使用TensorFlow,一个用于机器学习的开源软件库实施检测算法,结果表明了分配训练工作量并实现更高性能的潜力,同时在检测欺骗数据的检测中保持有效性。

Phasor measurement units (PMUs) provide high-fidelity data that improve situation awareness of electric power grid operations. PMU datastreams inform wide-area state estimation, monitor area control error, and facilitate event detection in real time. As PMU data become more available and increasingly reliable, these devices are found in new roles within control systems, such as remedial action schemes and early warning detection systems. As with other cyber physical systems, maintaining data integrity and security pose a significant challenge for power system operators. In this paper, we present a comprehensive analysis of multiple machine learning techniques to detect malicious data injection within PMU data streams. The two datasets used in this study come from two PMU networks: an inter-university, research-grade distribution network spanning three institutions in the U.S. Pacific Northwest, and a utility transmission network from the Bonneville Power Administration. We implement the detection algorithms with TensorFlow, an open-source software library for machine learning, and the results demonstrate potential for distributing the training workload and achieving higher performance, while maintaining effectiveness in the detection of spoofed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源