论文标题
从轮廓尺寸测量值及其应用小样品的球形粒度分布参数的最大似然估计
Maximum likelihood estimation of parameters of spherical particle size distributions from profile size measurements and its application for small samples
论文作者
论文摘要
显微镜研究通常需要从本节中的少数几个(10-200)剖面测量中恢复三个维度的粒度分布。这个问题与岩石学和矿物学研究尤其重要,其中参数假设是合理的,并且从小部分的微观研究中找到分布参数至关重要。本文介绍了粒子大致球形的特定情况(即威克塞尔的问题)。本文提出了球形颗粒曲线大小的概率密度的新近似值。这种近似使用矿物颗粒的实际非平滑度,而不是完美的球体。新的近似促进了最大似然方法的数值有效使用,这是一种通常强大的方法,可在大多数实际情况下提供最小差异的分布参数估计。通过替代参数方法(矩和最小距离估计方法)对几种典型的粒度分布进行数值比较,通过最大似然法的估计方法的差异和偏差进行了比较,并且发现最大似然估计比小样品更可取。最大似然方法以及建议的近似方法也可以用于选择模型,用于使用所有不随机采样的分发材料构建狭窄的置信区间,以构建分布参数,并包括截面边界相交的配置文件的测量值。使用冰川冰岩岩的示例来说明该方法的实用性。
Microscopy research often requires recovering particle-size distributions in three dimensions from only a few (10 - 200) profile measurements in the section. This problem is especially relevant for petrographic and mineralogical studies, where parametric assumptions are reasonable and finding distribution parameters from the microscopic study of small sections is essential. This paper deals with the specific case where particles are approximately spherical (i.e. Wicksell's problem). The paper presents a novel approximation of the probability density of spherical particle profile sizes. This approximation uses the actual non-smoothness of mineral particles rather than perfect spheres. The new approximation facilitates the numerically efficient use of the maximum likelihood method, a generally powerful method that provides the distribution parameter estimates of the minimal variance in most practical cases. The variance and bias of the estimates by the maximum likelihood method were compared numerically for several typical particle-size distributions with those by alternative parametric methods (method of moments and minimum distance estimation), and the maximum likelihood estimation was found to be preferable for both small and large samples. The maximum likelihood method, along with the suggested approximation, may also be used for selecting a model, for constructing narrow confidence intervals for distribution parameters using all the profiles without random sampling and for including the measurements of the profiles intersected by section boundaries. The utility of the approach is illustrated using an example from glacier ice petrography.