论文标题

椭圆形曲线与非亚伯纠缠

Elliptic curves with non-abelian entanglements

论文作者

Jones, Nathan, McMurdy, Ken

论文摘要

我们考虑对四倍体$(k,e,m_1,m_2)$进行分类的问题,其中$ k $是一个数字字段,$ e $是在$ k $和$ k $和$ k $和$ k $和$ k $和$(m_1,m_2)$的椭圆曲线上,是一对相对主要的积极整数,其中$ k(e [m_1] $ k(e [m_1])\ cap k(e [m_1) $ k $。模块化曲线有一个无限集$ \ Mathcal {s} $,其$ K $合理点捕获了$ k $上的所有椭圆曲线,而没有具有此属性的复杂乘法。我们的主要定理明确描述了$ \ Mathcal {s} $的(有限)子集,该子集由具有零属的模块化曲线组成。在$ k = \ mathbb {q} $的情况下,这有针对确定$ e $扭转的Galois代表何时尽可能大的申请。我们用特定示例说明了此应用程序。

We consider the problem of classifying quadruples $(K,E,m_1,m_2)$ where $K$ is a number field, $E$ is an elliptic curve defined over $K$ and $(m_1,m_2)$ is a pair of relatively prime positive integers for which the intersection $K(E[m_1]) \cap K(E[m_2])$ is a non-abelian extension of $K$. There is an infinite set $\mathcal{S}$ of modular curves whose $K$-rational points capture all elliptic curves over $K$ without complex multiplication that have this property. Our main theorem explicitly describes the (finite) subset of $\mathcal{S}$ consisting of those modular curves having genus zero. In the case $K = \mathbb{Q}$, this has applications to the problem of determining when the Galois representation on the torsion of $E$ is as large as possible modulo a prescribed obstruction; we illustrate this application with a specific example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源