论文标题
关于衡量共形组的新观点
Fresh perspective on gauging the conformal group
论文作者
论文摘要
我们考虑在局部形式转换下不变的重力理论的构建。我们首先以无限和有限的形式阐明了全球形式转换的几何性质,以及全球保形不变性对现场理论的后果,然后重新介绍了衡量保形组的现有方法,即辅助辅助结构规程理论和双层理论理论和双构态理论,而这些方法都不是一项完整的解决方案。然后,我们证明,只要任何事物领域都属于洛伦兹集团的不可证明的代表,最近提议的扩展的韦尔仪理论(EWGT)可以被视为衡量整形组的替代方法,因为EWGT是在全球范围内的整体范围内的整体范围,包括整体上的局部整体构造,包括那些拥有的局部保护,包括整体构造,包括一般的境界,包括群体,以及一系列的整体范围,包括群体,以及一系列的范围。不变性,还具有与全局形式转换相对应的“未命名”限制。相比之下,尽管标准的Weyl仪表理论也享有这些属性的第一个,但它不共享其他两个属性,因此不能被视为保形群体的有效仪表理论。
We consider the construction of gauge theories of gravity that are invariant under local conformal transformations. We first clarify the geometric nature of global conformal transformations, in both their infinitesimal and finite forms, and the consequences of global conformal invariance for field theories, before reconsidering existing approaches for gauging the conformal group, namely auxiliary conformal gauge theory and biconformal gauge theory, neither of which is generally accepted as a complete solution. We then demonstrate that, provided any matter fields belong to an irreducible representation of the Lorentz group, the recently proposed extended Weyl gauge theory (eWGT) may be considered as an alternative method for gauging the conformal group, since eWGT is invariant under the full set of local conformal transformations, including inversions, as well as possessing conservation laws that provide a natural local generalisation of those satisfied by field theories with global conformal invariance, and also having an `ungauged' limit that corresponds to global conformal transformations. By contrast, although standard Weyl gauge theory also enjoys the first of these properties, it does not share the other two, and so cannot be considered a valid gauge theory of the conformal group.