论文标题
BGC:图形集群的多代理组信念
BGC: Multi-Agent Group Belief with Graph Clustering
论文作者
论文摘要
最近的进步见证了基于价值分解的多代理增强学习方法在协调任务中具有有效的绩效。大多数当前方法都假定代理可以进行沟通以协助决策,这在某些情况下是不切实际的。在本文中,我们提出了一种半通信方法来启用代理可以在不通信的情况下交换信息。具体来说,我们介绍了一个小组概念,以帮助代理人学习一种是一种共识的信念。通过这种共识,相邻的代理人倾向于完成类似的子任务以实现合作。我们设计了一种名为图形聚类(BGC)的新型代理结构,该结构由代理特征模块,信念模块和融合模块组成。为了表示每个代理特性,我们使用基于MLP的特征模块来生成代理独特的特征。受社区认知一致性的启发,我们提出了一个基于组的模块,将相邻代理分为小组,并最大程度地减少小组内代理的信念,以完成类似的子任务。最后,我们使用超网络合并这些功能并产生代理动作。为了克服GAT带来的代理一致问题,引入了分裂损失以区分不同的代理。结果表明,所提出的方法在SMAC基准方面取得了重大改进。由于具有小组概念,我们的方法可以保持出色的性能,而代理数量的增加。
Recent advances have witnessed that value decomposed-based multi-agent reinforcement learning methods make an efficient performance in coordination tasks. Most current methods assume that agents can make communication to assist decisions, which is impractical in some situations. In this paper, we propose a semi-communication method to enable agents can exchange information without communication. Specifically, we introduce a group concept to help agents learning a belief which is a type of consensus. With this consensus, adjacent agents tend to accomplish similar sub-tasks to achieve cooperation. We design a novel agent structure named Belief in Graph Clustering(BGC), composed of an agent characteristic module, a belief module, and a fusion module. To represent each agent characteristic, we use an MLP-based characteristic module to generate agent unique features. Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs to accomplish similar sub-tasks. Finally, we use a hyper-network to merge these features and produce agent actions. To overcome the agent consistent problem brought by GAT, a split loss is introduced to distinguish different agents. Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark. Because of the group concept, our approach maintains excellent performance with an increase in the number of agents.