论文标题

Qubit读数的普遍绩效图

Generalized figure of merit for qubit readout

论文作者

D'Anjou, B.

论文摘要

许多有前途的容忍量子计算的有前途的方法需要重复的量子非态度(QND)读数二进制可观察物,例如量子位(QUBITS)。读取性能的常用图是单个重复中二进制分配的错误率。但是,众所周知,这个功绩不足。实际上,现实世界中的读取结果通常是模拟的,而不是二进制的。因此,二进制分配丢弃了有关模拟结果的信心水平的重要信息。在这里,建议了一个全面捕获模拟读数结果中包含的信息的广义优点。这一功绩图是与一个重复中模拟读数结果统计数据相关的Chernoff信息。与单重复错误率不同,Chernoff信息独特地确定了任意读数噪声的渐近累积错误率。结果,实验中常见的非高斯读数噪声可以通过具有相同Chernoff信息的有效高斯噪声来描述。重要的是,这表明这种通用描述持续存在与实际实验相关的少量重复和非QND缺陷。最后,Chernoff信息用于严格量化模拟转换丢弃的信息量。这些结果为Qubit读数提供了统一的框架,并应促进所有平台上近期量子设备的优化和工程。

Many promising approaches to fault-tolerant quantum computation require repeated quantum nondemolition (QND) readout of binary observables such as quantum bits (qubits). A commonly used figure of merit for readout performance is the error rate for binary assignment in a single repetition. However, it is known that this figure of merit is insufficient. Indeed, real-world readout outcomes are typically analog instead of binary. Binary assignment therefore discards important information on the level of confidence in the analog outcomes. Here, a generalized figure of merit that fully captures the information contained in the analog readout outcomes is suggested. This figure of merit is the Chernoff information associated with the statistics of the analog readout outcomes in one repetition. Unlike the single-repetition error rate, the Chernoff information uniquely determines the asymptotic cumulative error rate for arbitrary readout noise. As a result, non-Gaussian readout noise common in experiments can be described by effective Gaussian noise with the same Chernoff information. Importantly, it is shown that such a universal description persists for the small number of repetitions and non-QND imperfections relevant to real experiments. Finally, the Chernoff information is used to rigorously quantify the amount of information discarded by analog-to-binary conversion. These results provide a unified framework for qubit readout and should facilitate optimization and engineering of near-term quantum devices across all platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源