论文标题
神经网络和量子场理论
Neural Networks and Quantum Field Theory
论文作者
论文摘要
我们就威尔逊有效的领域理论提出了对神经网络的理论理解。该对应关系取决于以下事实:许多渐近神经网络都是从高斯过程(非相互作用场理论的类似物)中得出的。远离渐近极限会产生一个非高斯过程,对应于打开粒子相互作用,从而可以计算使用Feynman图的神经网络输出的相关函数。最小的非高斯工艺可能性是根据威尔逊重新归一化组引起的其系数的流量来确定的最相关的非高斯术语。这产生了过度参数化和神经网络可能性的简单性之间的直接联系。该系数是否是常数还是功能可以从GP限制对称性方面理解,这是从Hooft的技术自然性中预期的。一般的理论计算与允许对应关系的最简单类型类别中的神经网络实验匹配。我们的形式主义对于在渐近极限中成为GP的众多架构中的任何一个有效,该体格保留在某些类型的培训下。
We propose a theoretical understanding of neural networks in terms of Wilsonian effective field theory. The correspondence relies on the fact that many asymptotic neural networks are drawn from Gaussian processes, the analog of non-interacting field theories. Moving away from the asymptotic limit yields a non-Gaussian process and corresponds to turning on particle interactions, allowing for the computation of correlation functions of neural network outputs with Feynman diagrams. Minimal non-Gaussian process likelihoods are determined by the most relevant non-Gaussian terms, according to the flow in their coefficients induced by the Wilsonian renormalization group. This yields a direct connection between overparameterization and simplicity of neural network likelihoods. Whether the coefficients are constants or functions may be understood in terms of GP limit symmetries, as expected from 't Hooft's technical naturalness. General theoretical calculations are matched to neural network experiments in the simplest class of models allowing the correspondence. Our formalism is valid for any of the many architectures that becomes a GP in an asymptotic limit, a property preserved under certain types of training.