论文标题

随机负载平衡网络流体动力限制的不变状态

Invariant states of hydrodynamic limits of randomized load balancing networks

论文作者

Agarwal, Pooja, Ramanan, Kavita

论文摘要

随机负载平衡算法以相对较低的计算成本在改善大规模网络的性能中起着重要作用。这种系统的通用模型是$ n $并行队列的网络,其中使用独立且分布的服务时间在到达时使用join-the-the-theart-them-d $ Ququesues路由路由算法进行路由。在相当普遍的条件下,Aghajani和Ramanan表明,作为$ n \ rightarrow \ infty $,状态动力学收敛到可计数的耦合确定性测量方程的唯一解决方案,称为流体动力学方程。在本文中,获得了这些流体动力方程的不变状态的表征,当$ d = 2 $时,用于构造数值算法以计算队列长度分布和在不变状态下的平均虚拟等待时间。此外,还表明,在服务分布的适当尾部条件下,不变状态的队列长度分布表现出双重指数式的尾巴衰减,因此表明性能的巨大改善$ d = 1 $,这与随机路由相对应,当时尾巴衰减甚至可以是多项量的。此外,还提供了数值证据来支持猜想,即不变状态是$ n $ server模型的稳态分布的限制。证明方法需要分析对测量方程的耦合系统,可以可能应用于具有一般服务分布的其他多个服务器系统,在该系统中,措施值值表示表示有用。

Randomized load-balancing algorithms play an important role in improving performance in large-scale networks at relatively low computational cost. A common model of such a system is a network of $N$ parallel queues in which incoming jobs with independent and identically distributed service times are routed on arrival using the join-the-shortest-of-$d$-queues routing algorithm. Under fairly general conditions, it was shown by Aghajani and Ramanan that as $N\rightarrow\infty$, the state dynamics converges to the unique solution of a countable system of coupled deterministic measure-valued equations called the hydrodynamic equations. In this article, a characterization of invariant states of these hydrodynamic equations is obtained and, when $d=2$, used to construct a numerical algorithm to compute the queue length distribution and mean virtual waiting time in the invariant state. Additionally, it is also shown that under a suitable tail condition on the service distribution, the queue length distribution of the invariant state exhibits a doubly exponential tail decay, thus demonstrating a vast improvement in performance over the case $d=1$, which corresponds to random routing, when the tail decay could even be polynomial. Furthermore, numerical evidence is provided to support the conjecture that the invariant state is the limit of the steady-state distributions of the $N$-server models. The proof methodology, which entails analysis of a coupled system of measure-valued equations, can potentially be applied to other many-server systems with general service distributions, where measure-valued representations are useful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源