论文标题
通过统计收敛序列的$ M $ -COMPACT设置的表征
Characterization of $M$-compact sets via statistically convergent sequences
论文作者
论文摘要
在本文中,我们研究了$ m $ $ compactness $ l^p $ Banach Space的稳定性,价格为$ 1 \ leq P <\ infty $。我们还从统计上最大化序列方面获得了$ M $ compact集的表征,该序列比最大化序列弱。此外,我们介绍了$ \ mathcal {i} $ - $ m $ - $ m $ -compactness thromed Linear space $ x $的有界子集$ m $相对于理想的$ \ nathcal {i} $,并表明它等于$ m $ chompactness for $ m $ chompactness for Antrivivial-Trivivial-trivivial-trivivial-trivivial Advenial forsissiblessibs forsissiblessiblessife forsissible forsissible Idealss。
In this paper, we study stability of $M$-compactness for $l^p$ sum of Banach spaces for $1\leq p<\infty$. We also obtain a characterization of $M$-compact sets in terms of statistically maximizing sequence, a notion which is weaker than a maximizing sequence. Moreover, we introduce the notion of $\mathcal{I}$-$M$-compactness of a bounded subset $M$ of a normed linear space $X$ with respect to an ideal $\mathcal{I}$ and show that it is equivalent to $M$-compactness for non-trivial admissible ideals.