论文标题
关于$ \ bar {b}^0 \ rightarrow [k^-π^+] _ {s/v} [π^+π^ - ] _ {v/s} \ rightArrow k^-π^-π^+π^+pecAy^ -
Phenomenological studies on the $\bar{B}^0\rightarrow [K^-π^+]_{S/V}[π^+π^-]_{V/S} \rightarrow K^-π^+π^+π^-$ decay
论文作者
论文摘要
在准二体衰变模型中,我们研究了四体衰变$ \ bar {b}^0 \ rightArrow [k^-π^+] _ {s/v} [π^+ph^+priendArlOW $ cp {k^-π^+] $π^-π^+$成对不变质量为$ 0.35 <m_ {k^-π^+} <2.04 \,\ mathrm {gev} $和$ 0 <m_ {π^-π^+} <1.06 \,\ mathrm {gev} $ $ \ bar {k}^*_ 0(700)^0 $,$ \ bar {k}^*(892)^0 $,$ \ bar {k}^*(1410)^0 $,$ \ bar {k}^*_ 0(1430) $ρ^0(770)$,$ω(782)$和$ f_0(980)$共振。在处理这些共振的动态功能时,$ f_0(500)$,$ρ^0(770)$,$ f_0(980)$和$ \ \ bar {k}^*_ 0(1430)$都与Bugg模型,Gounaris-Sakurai函数,Flatt $ formation and and and} $ {分别通过相对论的Breit-Wigner函数描述了其他人。在[0,0.5] $和$ ϕ_a \ in [0,2π] $中采用终点差异参数$ρ_a\,我们的预测结果是$ \ nathcal {a_ {a_ {cp}}(\ bar {b} $ \ MATHCAL {b}(\ bar {b}^0 \ rightArrow k^-π^+π^+π^ - )\在[7.36,199.69] \ times10^{ - 8} $基于假设$ q \ b bar {q} $结构的spalar {q} $结构中的scalar mesons in Scalar mesons in s qccd facterization for Scalar mesons in v qccd facterization。同时,我们计算两体衰减的$ cp $违反的不对称和分支分支$ \ bar {b}^0 \ rightarrow sv(vs)$,所有单个四体衰减$ \ bar {b}^0 \ rightarrow sv(vs)我们对两体的理论结果衰减$ \ bar {b}^0 \ rightarrow \ bar {k}^*(892)^0 $$ f_0(980)$,$ \ bar {b}^0 \ rightArrow \ rightArrow \ bar {k}^k}^*_ 0(1430)^0(1430) $ \ bar {b}^0 \ rightarrow \ bar {k}^*(892)^0f_0(980)$,$ \ bar {b}^0 \ rightarrow \ bar {k}^*_ 0(1430)
Within the quasi-two-body decay model, we study the localized $CP$ violation and branching fraction of the four-body decay $\bar{B}^0\rightarrow [K^-π^+]_{S/V}[π^+π^-]_{V/S} \rightarrow K^-π^+π^-π^+$ when $K^-π^+$ and $π^-π^+$ pair invariant masses are $0.35<m_{K^-π^+}<2.04 \, \mathrm{GeV}$ and $0<m_{π^-π^+}<1.06\, \mathrm{GeV}$, with the pairs being dominated by the $\bar{K}^*_0(700)^0$, $\bar{K}^*(892)^0$, $\bar{K}^*(1410)^0$, $\bar{K}^*_0(1430)$ and $\bar{K}^*(1680)^0$, and $f_0(500)$, $ρ^0(770)$ , $ω(782)$ and $f_0(980)$ resonances, respectively. When dealing with the dynamical functions of these resonances, $f_0(500)$, $ρ^0(770)$, $f_0(980)$ and $\bar{K}^*_0(1430)$ are modeled with the Bugg model, Gounaris-Sakurai function, Flatt$\acute{\mathrm{e}}$ formalism and LASS lineshape, respectively, while others are described by the relativistic Breit-Wigner function. Adopting the end point divergence parameters $ρ_A\in[0,0.5]$ and $ϕ_A\in[0,2π]$, our predicted results are $\mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-π^+π^+π^-)\in[-0.383,0.421]$ and $\mathcal{B}(\bar{B}^0\rightarrow K^-π^+π^+π^-)\in[7.36,199.69]\times10^{-8}$ based on the hypothetical $q\bar{q}$ structures for the scalar mesons in the QCD factorization approach. Meanwhile, we calculate the $CP$ violating asymmetries and branching fractions of the two-body decays $\bar{B}^0\rightarrow SV(VS)$ and all the individual four-body decays $\bar{B}^0\rightarrow SV(VS) \rightarrow K^-π^+π^-π^+$, respectively. Our theoretical results for the two-body decays $\bar{B}^0\rightarrow \bar{K}^*(892)^0$$f_0(980)$, $\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0$$ω(782)$, $\bar{B}^0\rightarrow \bar{K}^*(892)^0f_0(980)$, $\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0ρ$,