论文标题
拓扑kagome磁铁中的磁竞争
Magnetic competition in topological kagome magnets
论文作者
论文摘要
通过结合自旋轨道耦合,各向异性hund耦合并将旋转交换融合到Kagome晶格中,研究了拓扑kagome磁铁中的磁竞争。使用Bogoliubov的变分原理,我们发现稳定相位为零和有限的温度。在零温度和强大的Hund耦合方案中,从平面外铁磁性(FM)到平面内反铁磁性(AFM)的磁性可调性是通过关键的平面内hund偶联的普遍特性来实现的。在三分之二的情况下,从平面外FM到面内AFM的相变,伴随着从量子异常大厅(QAH)到量子异常旋转厅(QASH)效应的拓扑过渡。在磁相跃迁时观察到附近的一半,填充了一个大霍尔电导。在有限的温度下,平面外FM稳定,直到交叉温度为止,在该温度之上,平面内AFM稳定,但平面外FM磁化强度仍然有限。这表明这些磁相在有限的温度范围内共存。
Magnetic competition in topological kagome magnets is studied by incorporating the spin-orbit coupling, the anisotropic Hund coupling and spin exchange into the kagome lattice. Using the Bogoliubov variational principle we find the stable phases at zero and finite temperatures. At zero temperature and in the strong Ising-Hund coupling regime, a magnetic tunability from the out-of-plane ferromagnetism (FM) to the in-plane antiferromagnetism (AFM) is achieved by a universal property of the critical in-plane Hund coupling. At two-thirds filling the phase transition from the out-of-plane FM to the in-plane AFM is accompanied by a topological transition from quantum anomalous Hall (QAH) to quantum anomalous spin Hall (QASH) effect. Nearby half filling a large anomalous Hall conductance is observed at the magnetic phase transition. At finite temperature the out-of-plane FM is stable until a crossing temperature, above which the in-plane AFM is stable, but the out-of-plane FM magnetization is still finite. This suggests a coexistence of these magnetic phases in a finite temperature range.