论文标题

使用神经体系结构搜索增强的MRI重建网络

Enhanced MRI Reconstruction Network using Neural Architecture Search

论文作者

Huang, Qiaoying, Yang, Dong, Xian, Yikun, Wu, Pengxiang, Yi, Jingru, Qu, Hui, Metaxas, Dimitris

论文摘要

使用现代深度学习技术对不采样不采样的磁共振成像(MRI)数据的准确重建需要大量精力来设计必要的复杂神经网络体系结构。 MRI重建的级联网络体系结构已被广泛使用,而当网络变得深处时,它遇到了“消失的梯度”问题。此外,同质体系结构降低了网络的表示能力。在这项工作中,我们使用残留基本块中的残差提出了增强的MRI重建网络。对于基本块中的每个单元格,我们使用可区分的神经体系结构搜索(NAS)技术自动选择密集块的八个变体之间的最佳操作。在两个公开可用的数据集上评估了这个新的异质网络,并胜过所有当前最新方法,这些方法证明了我们提出的方法的有效性。

The accurate reconstruction of under-sampled magnetic resonance imaging (MRI) data using modern deep learning technology, requires significant effort to design the necessary complex neural network architectures. The cascaded network architecture for MRI reconstruction has been widely used, while it suffers from the "vanishing gradient" problem when the network becomes deep. In addition, homogeneous architecture degrades the representation capacity of the network. In this work, we present an enhanced MRI reconstruction network using a residual in residual basic block. For each cell in the basic block, we use the differentiable neural architecture search (NAS) technique to automatically choose the optimal operation among eight variants of the dense block. This new heterogeneous network is evaluated on two publicly available datasets and outperforms all current state-of-the-art methods, which demonstrates the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源