论文标题

激发引起的随机散射理论引起的dephasing:时间依赖性非线性相干激子线形

Stochastic scattering theory for excitation induced dephasing: Time-dependent nonlinear coherent exciton lineshapes

论文作者

Kandada, Ajay Ram Srimath, Li, Hao, Thouin, Félix, Bittner, Eric R., Silva, Carlos

论文摘要

我们开发了一种随机理论,该理论可以处理时间依赖性的激子 - 外激体散射,并解释了动态库仑筛选,我们将其描述为平均场限制。通过该理论,我们模拟了激发引起的脱位效应对时间分辨的二维相干光线形的效应,并且我们确定了许多特征,这些功能可以归因于激子背景中发生的多体动力学,包括动态线条狭窄,真实和假想的频谱组件和多种谱。我们通过在二维金属壁半导体上通过多维相干光谱测试该模型,该光谱符合具有强极性特征的紧密结合的激子和Biexcitons。我们发现激子非线性相干线形反映了多体相关性,从而引起激发引起的脱粒。此外,我们观察到,随着时间的时间窗口,人口本身是静态的,激烈的线形随着人口的时间窗口而演变,这种方式揭示了多体型多体耦合的演变。具体而言,随着时间的推移,脱态动力学会随着时间的推移而放慢速度,该速率受激子多体相互作用和动态库仑筛选电位的强度控制的速率。连贯的光学线形的实际部分在零时间显示出强分散特征,从而在激发引起的dephasing效果的耗散时间尺度上转变为吸收性线形,而假想部分则显示相反的行为。我们的微观理论方法足够灵活,可以广泛探索系统托架动力学如何促进线性和非线性时间分辨的光谱行为。

We develop a stochastic theory that treats time-dependent exciton-exciton s-wave scattering and that accounts for dynamic Coulomb screening, which we describe within a mean-field limit. With this theory, we model excitation-induced dephasing effects on time-resolved two-dimensional coherent optical lineshapes and we identify a number of features that can be attributed to the many-body dynamics occurring in the background of the exciton, including dynamic line narrowing, mixing of real and imaginary spectral components, and multi-quantum states. We test the model by means of multidimensional coherent spectroscopy on a two-dimensional metal-halide semiconductor that hosts tightly bound excitons and biexcitons that feature strong polaronic character. We find that the exciton nonlinear coherent lineshape reflects many-body correlations that give rise to excitation-induced dephasing. Furthermore, we observe that the exciton lineshape evolves with population time over time windows in which the population itself is static, in a manner that reveals the evolution of the multi-exciton many-body couplings. Specifically, the dephasing dynamics slow down with time, at a rate that is governed by the strength of exciton many-body interactions and on the dynamic Coulomb screening potential. The real part of the coherent optical lineshape displays strong dispersive character at zero time, which transforms to an absorptive lineshape on the dissipation timescale of excitation-induced dephasing effects, while the imaginary part displays converse behavior. Our microscopic theoretical approach is sufficiently flexible to allow for a wide exploration of how system-bath dynamics contribute to linear and non-linear time-resolved spectral behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源