论文标题
数据驱动的新兴多波段网络频率迁移率参数的优化
Data Driven Optimization of Inter-Frequency Mobility Parameters for Emerging Multi-band Networks
论文作者
论文摘要
5G及以后的密集化和多波段操作对移动性管理构成了前所未有的挑战,尤其是对于频率间移交。关键频率间移动参数的影响,即触发A5时间(TTT),A5阈值1和A5阈值对系统性能的影响,尚未完全了解以下事实。这些参数固定为黄金标准值或通过命中和试验进行调整。本文提出了第一项研究,以分析和优化A5参数,以共同最大化两个关键性能指标(KPI):参考信号接收功率(RSRP)和交换成功率(HOSR)。由于分析建模无法捕获系统级的复杂性,因此使用了数据驱动的方法。通过开发基于XGBoost的模型,从精度上胜过其他模型,我们首先分析了三个参数对两个KPI的并发影响。结果揭示了三个关键见解:1)每个KPI都有最佳参数值; 2)这些最佳值不一定属于当前的黄金标准; 3)两个KPI的最佳参数值不重叠。然后,我们利用基于SOBOL方差的灵敏度分析来提出一些见解,这些见解可用于避免参数冲突,同时共同最大化两个KPI。我们制定了关节RSRP和HOSR优化问题,表明它是非凸的,并使用遗传算法(GA)解决了它。与基于蛮力的结果进行比较表明,所提出的数据驱动的GA辅助解决方案更快48倍,最佳损失可忽略不计。
Densification and multi-band operation in 5G and beyond pose an unprecedented challenge for mobility management, particularly for inter-frequency handovers. The challenge is aggravated by the fact that the impact of key inter-frequency mobility parameters, namely A5 time to trigger (TTT), A5 threshold1 and A5 threshold2 on the system's performance is not fully understood. These parameters are fixed to a gold standard value or adjusted through hit and trial. This paper presents a first study to analyze and optimize A5 parameters for jointly maximizing two key performance indicators (KPIs): Reference signal received power (RSRP) and handover success rate (HOSR). As analytical modeling cannot capture the system-level complexity, a data driven approach is used. By developing XGBoost based model, that outperforms other models in terms of accuracy, we first analyze the concurrent impact of the three parameters on the two KPIs. The results reveal three key insights: 1) there exist optimal parameter values for each KPI; 2) these optimal values do not necessarily belong to the current gold standard; 3) the optimal parameter values for the two KPIs do not overlap. We then leverage the Sobol variance-based sensitivity analysis to draw some insights which can be used to avoid the parametric conflict while jointly maximizing both KPIs. We formulate the joint RSRP and HOSR optimization problem, show that it is non-convex and solve it using the genetic algorithm (GA). Comparison with the brute force-based results show that the proposed data driven GA-aided solution is 48x faster with negligible loss in optimality.