论文标题

中子中微子转运中微子在中子星星合并模拟中

Monte-Carlo neutrino transport in neutron star merger simulations

论文作者

Foucart, Francois, Duez, Matthew D., Hebert, Francois, Kidder, Lawrence E., Pfeiffer, Harald P., Scheel, Mark A.

论文摘要

合并中子恒星二进制的引力波和电磁信号提供了有关密集物质的特性,重元素的形成和高能天体物理学的有价值的信息。为了充分利用对这些系统的观察,我们需要数值模拟,这些模拟为这些合并中物质的属性提供了可靠的预测。当前模拟的一个重要局限性是使用近似方法用于中微子转运,而中微子转运不会随着数值分辨率的增加而不会收敛到传输方程的解决方案,因此具有无法量化的误差。在这里,我们报告了使用蒙特卡洛技术直接求解低密度区域中的传输方程的二进制中子星合并的第一次模拟。在高密度区域中,我们使用受蒙特卡洛隐式启发的近似值可大大降低模拟成本,同时仅通过更昂贵的收敛研究引入可量化的错误。我们模拟了不等的质量中子星二进制合并,最高$ 5 \,{\ rm ms} $过去的合并,并报告物质和中微子流出的属性。最后,我们将结果与最佳近似“ M1”运输方案的输出进行了比较,这表明,仔细近似中微子能量谱的M1方案仅导致$ \ sim 10 \%$ $ $ \ sim20 \%$ n n n n $ \ sim20 \%$ necties the $ c $ n $ c $ $ n pum和$ n pum和$ n pumin和$ n pum um和$ n pumin和$ n pum umin $ n um umin $ copties $ \ sim20 \%$ ument。 M1和Monte-Carlo结果之间发现的最重要的分歧是$ \ sim 2 $差异的因子差异。

Gravitational waves and electromagnetic signals from merging neutron star binaries provide valuable information about the the properties of dense matter, the formation of heavy elements, and high-energy astrophysics. To fully leverage observations of these systems, we need numerical simulations that provide reliable predictions for the properties of the matter unbound in these mergers. An important limitation of current simulations is the use of approximate methods for neutrino transport that do not converge to a solution of the transport equations as numerical resolution increases, and thus have errors that are impossible to quantify. Here, we report on a first simulation of a binary neutron star merger that uses Monte-Carlo techniques to directly solve the transport equations in low-density regions. In high-density regions, we use approximations inspired by implicit Monte-Carlo to greatly reduce the cost of simulations, while only introducing errors quantifiable through more expensive convergence studies. We simulate an unequal mass neutron star binary merger up to $5\,{\rm ms}$ past merger, and report on the properties of the matter and neutrino outflows. Finally, we compare our results to the output of our best approximate `M1' transport scheme, demonstrating that an M1 scheme that carefully approximates the neutrino energy spectrum only leads to $\sim 10\%$ uncertainty in the composition and velocity of the ejecta, and $\sim20\%$ uncertainty in the $ν_e$ and $\barν_e$ luminosities and energies. The most significant disagreement found between M1 and Monte-Carlo results is a factor of $\sim 2$ difference in the luminosity of heavy-lepton neutrinos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源