论文标题

城市铁路运输系统中的短期起源用途需求预测:通渠道的细分分裂跨斜神经网络方法

Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise attentive split-convolutional neural network method

论文作者

Zhang, Jinlei, Che, Hongshu, Chen, Feng, Ma, Wei, He, Zhengbing

论文摘要

城市铁路运输(URT)中的短期起源用途(OD)流动预测在智能和实时的URT操作和管理中起着至关重要的作用。与其他短期流量预测方法不同,短期OD流量预测具有三个独特的特征:(1)数据可用性:预测期间无法实时OD流量; (2)数据维度:OD流的维度高于运输网络的基数; (3)数据稀疏性:urt OD流量是时空稀疏。非常需要开发新的OD流动预测方法,该方法明确考虑了URT系统的独特特征。为此,提出了一个渠道的细心分裂跨跨跨跨跨跨跨跨跨跨跨跨斜神经网络(CAS-CNN)。所提出的模型由许多新型组成部分组成,例如渠道注意机制和CNN分裂。特别是,创新的流入/流出门控机制是为了解决数据可用性问题。我们最初进一步提出了一个蒙版损耗函数,以解决数据维度和数据稀疏问题。还详细讨论了模型的解释性。 CAS-CNN模型在北京地铁的两个大规模现实世界数据集上进行了测试,并且表现优于其余基准方法。提出的模型有助于短期OD流量预测的发展,并且还奠定了实时URT操作和管理的基础。

Short-term origin-destination (OD) flow prediction in urban rail transit (URT) plays a crucial role in smart and real-time URT operation and management. Different from other short-term traffic forecasting methods, the short-term OD flow prediction possesses three unique characteristics: (1) data availability: real-time OD flow is not available during the prediction; (2) data dimensionality: the dimension of the OD flow is much higher than the cardinality of transportation networks; (3) data sparsity: URT OD flow is spatiotemporally sparse. There is a great need to develop novel OD flow forecasting method that explicitly considers the unique characteristics of the URT system. To this end, a channel-wise attentive split-convolutional neural network (CAS-CNN) is proposed. The proposed model consists of many novel components such as the channel-wise attention mechanism and split CNN. In particular, an inflow/outflow-gated mechanism is innovatively introduced to address the data availability issue. We further originally propose a masked loss function to solve the data dimensionality and data sparsity issues. The model interpretability is also discussed in detail. The CAS-CNN model is tested on two large-scale real-world datasets from Beijing Subway, and it outperforms the rest of benchmarking methods. The proposed model contributes to the development of short-term OD flow prediction, and it also lays the foundations of real-time URT operation and management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源