论文标题
Chern-Simons理论中的拓扑反射熵
Topological reflected entropy in Chern-Simons theories
论文作者
论文摘要
我们研究了两个空间区域之间的反射熵,其中$(2+1)$ - 尺寸Chern-Simons理论。利用其复制技巧公式,使用边缘理论方法和手术方法计算反射的熵。两种方法都产生相同的结果。在本文中考虑的所有情况下,我们发现反射的熵与共同信息一致,即使它们的rényi版本一般不同。我们还使用边缘理论方法计算奇怪的熵。反射的熵和奇怪的熵都在纠缠楔横截面方面具有简单的全息双重解释。我们表明,在$(2+1)$ - 尺寸的Chern-Simons理论中,这两个数量的相关方式与二维全息形式保形场理论(CFT)相似,直到经典的香农作品。
We study the reflected entropy between two spatial regions in $(2+1)$-dimensional Chern-Simons theories. Taking advantage of its replica trick formulation, the reflected entropy is computed using the edge theory approach and the surgery method. Both approaches yield identical results. In all cases considered in this paper, we find that the reflected entropy coincides with the mutual information, even though their Rényi versions differ in general. We also compute the odd entropy with the edge theory method. The reflected entropy and the odd entropy both possess a simple holographic dual interpretation in terms of entanglement wedge cross-section. We show that in $(2+1)$-dimensional Chern-Simons theories, both quantities are related in a similar manner as in two-dimensional holographic conformal field theories (CFTs), up to a classical Shannon piece.