论文标题
归纳逻辑编程在30:新简介
Inductive logic programming at 30: a new introduction
论文作者
论文摘要
归纳逻辑编程(ILP)是机器学习的一种形式。 ILP的目的是诱导概括培训示例的假设(一组逻辑规则)。随着ILP 30岁,我们为该领域提供了新的介绍。我们介绍了必要的逻辑符号和主要的学习设置;描述ILP系统的基础;比较几个维度上的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出显示关键应用领域;最后,总结了当前的局限性和未来研究的方向。
Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.