论文标题
随机潜力中扩散分散体的洪水动态
Flooding dynamics of diffusive dispersion in a random potential
论文作者
论文摘要
我们讨论了在扩散系数很小的极限的淬灭的随机电势和扩散中过度阻尼运动的综合作用。我们的分析考虑了达到$ x $的位置的平均第一通道时间$ t(x)$的统计数据,这是由于对随机潜力的不同实现而引起的:具体来说,我们对比了$ \ bar t(x)$的中值,这是对分散的典型过程的信息描述,与期望值$ \ langle \ langle \ langle \ rangle \ rangle $ range $ range the tone promention相比扩散。我们表明,在相对较短的时间中,中位数$ \ bar t(x)$由“洪水”模型解释,其中$ t(x)$主要取决于在达到位置$ x $之前遇到的最高障碍。使用极值统计的方法对这些最高障碍进行量化。
We discuss the combined effects of overdamped motion in a quenched random potential and diffusion, in one dimension, in the limit where the diffusion coefficient is small. Our analysis considers the statistics of the mean first-passage time $T(x)$ to reach position $x$, arising from different realisations of the random potential: specifically, we contrast the median $\bar T(x)$, which is an informative description of the typical course of the dispersion, with the expectation value $\langle T(x)\rangle$, which is dominated by rare events where there is an exceptionally high barrier to diffusion. We show that at relatively short times the median $\bar T(x)$ is explained by a 'flooding' model, where $T(x)$ is predominantly determined by the highest barriers which is encountered before reaching position $x$. These highest barriers are quantified using methods of extreme value statistics.