论文标题

Convru在动作结果预测的细粒度投球行动中识别

ConvGRU in Fine-grained Pitching Action Recognition for Action Outcome Prediction

论文作者

Ma, Tianqi, Zhang, Lin, Diao, Xiumin, Ma, Ou

论文摘要

对于机器人与人类合作的机器人,对动作结果的预测是一个新的挑战。近年来,随着视频动作识别的令人印象深刻的进展,视频数据的细粒度识别变成了新的问题。细粒度的行动识别检测到更具体的粒度行动的细微差异,并且在许多领域(例如人类机器人互动,智能交通管理,体育培训,健康关怀)中都很重要。考虑到不同的结果与动作的细微差异密切相关,因此细粒度的行动识别是一种实用方法的实用方法。在本文中,我们探讨了卷积门复发单元(Consgru)方法在细粒度的动作识别任务上的性能:预测球形的结果。根据人类行为的RGB图像序列,提出的方法达到了79.17%的精度的性能,超过了当前的最新结果。我们还比较了不同的网络实现,并展示了不同图像采样方法,不同的融合方法和预训练等的影响。最后,我们在此类行动结果预测和细粒度的动作识别任务中讨论了Convru的优势和局限性。

Prediction of the action outcome is a new challenge for a robot collaboratively working with humans. With the impressive progress in video action recognition in recent years, fine-grained action recognition from video data turns into a new concern. Fine-grained action recognition detects subtle differences of actions in more specific granularity and is significant in many fields such as human-robot interaction, intelligent traffic management, sports training, health caring. Considering that the different outcomes are closely connected to the subtle differences in actions, fine-grained action recognition is a practical method for action outcome prediction. In this paper, we explore the performance of convolutional gate recurrent unit (ConvGRU) method on a fine-grained action recognition tasks: predicting outcomes of ball-pitching. Based on sequences of RGB images of human actions, the proposed approach achieved the performance of 79.17% accuracy, which exceeds the current state-of-the-art result. We also compared different network implementations and showed the influence of different image sampling methods, different fusion methods and pre-training, etc. Finally, we discussed the advantages and limitations of ConvGRU in such action outcome prediction and fine-grained action recognition tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源