论文标题

因果关系的纠缠熵。

Entanglement Entropy of Causal Set de Sitter Horizons

论文作者

Surya, Sumati, X, Nomaan, Yazdi, Yasaman K.

论文摘要

已知De Sitter宇宙学视野表现出类似于黑洞地平线的热力学特性。在这项工作中,我们使用Sorkin的时空纠缠熵(SSEE)公式研究了因果关系,以进行共同耦合的量子标量场。我们使用Sorkin-Johnston真空状态计算出$ d = 2,4 $时空维度的de Sitter Spacetime的对称板的Rindler样楔子的因果集SSEE。我们发现,当Pauli-Jordan操作员的光谱在De Sitter板上及其限制在类似Rindler的楔子中时,SSEE遵守了一项区域法。没有这种截断,SSEE就可以满足卷法。这与Sorkin和Yazdi在$ \ Mathbb {M}^2 $中的因果关系SSEE的计算一致,在那里他们表明只有在截断Pauli-Jordan Spectrum之后才能获得区域法律。在这项工作中,我们探索了不同的截短计划,该标准是SSEE遵守了该地区法律。

de Sitter cosmological horizons are known to exhibit thermodynamic properties similar to black hole horizons. In this work we study causal set de Sitter horizons, using Sorkin's spacetime entanglement entropy (SSEE) formula, for a conformally coupled quantum scalar field. We calculate the causal set SSEE for the Rindler-like wedge of a symmetric slab of de Sitter spacetime in $d=2,4$ spacetime dimensions using the Sorkin-Johnston vacuum state. We find that the SSEE obeys an area law when the spectrum of the Pauli-Jordan operator is appropriately truncated in both the de Sitter slab as well as its restriction to the Rindler-like wedge. Without this truncation, the SSEE satisfies a volume law. This is in agreement with Sorkin and Yazdi's calculations for the causal set SSEE for nested causal diamonds in $\mathbb{M}^2$, where they showed that an area law is obtained only after truncating the Pauli-Jordan spectrum. In this work we explore different truncation schemes with the criterion that the SSEE so obtained obeys an area law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源