论文标题

扭曲过渡金属二甲基元化双层中的深色莫伊尔电势

Deep moiré potentials in twisted transition metal dichalcogenide bilayers

论文作者

Shabani, Sara, Halbertal, Dorri, Wu, Wenjing, Chen, Mingxing, Liu, Song, Hone, James, Yao, Wang, Basov, Dmitri N., Zhu, Xiaoyang, Pasupathy, Abhay N.

论文摘要

在半导体过渡金属二核苷(TMDS)的扭曲双层中,结构波纹和电子耦合的组合会引起周期性的Moiré电位,这些电势可以限制带电和中性激励。在这里,我们报告了使用扫描隧道显微镜(STM)在H堆积构型中WSE2和MOSE2扭曲双层的结构和光谱性能的实验测量。我们的实验表明,这些双角度的Moiré潜力出乎意料地很大,价值带的值高于300 MEV,而传导带的MOV值则为150 MEV,这是基于单独层间偶联的理论估计值大于理论估计的数量级。我们进一步证明,Moiré电位是Moiré波长的非单调功能,在13nmMoiré时期达到最大值。这种非单调性与Moiré模式的结构发生了巨大变化,从小莫伊尔波长下的堆叠顺序的连续变化到大型波长的一维孤子主导的结构。我们表明,通过连续的机械弛豫模型可以很好地捕获Moiré模式的平面结构,并发现Moiré结构和内部应变而不是层间耦合是确定Moiré电位的主要因素。我们的结果表明,使用精确的Moiré结构为量子电子和光电子制剂创建深深捕获的载体或激发的潜力。

In twisted bilayers of semiconducting transition metal dichalcogenides (TMDs), a combination of structural rippling and electronic coupling gives rise to periodic moiré potentials that can confine charged and neutral excitations. Here, we report experimental measurements of the structure and spectroscopic properties of twisted bilayers of WSe2 and MoSe2 in the H-stacking configuration using scanning tunneling microscopy (STM). Our experiments reveal that the moiré potential in these bilayers at small angles is unexpectedly large, reaching values of above 300 meV for the valence band and 150 meV for the conduction band - an order of magnitude larger than theoretical estimates based on interlayer coupling alone. We further demonstrate that the moiré potential is a non-monotonic function of moiré wavelength, reaching a maximum at around a 13nm moiré period. This non-monotonicity coincides with a drastic change in the structure of the moiré pattern from a continuous variation of stacking order at small moiré wavelengths to a one-dimensional soliton dominated structure at large moiré wavelengths. We show that the in-plane structure of the moiré pattern is captured well by a continuous mechanical relaxation model, and find that the moiré structure and internal strain rather than the interlayer coupling is the dominant factor in determining the moiré potential. Our results demonstrate the potential of using precision moiré structures to create deeply trapped carriers or excitations for quantum electronics and optoelectronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源