论文标题

绘画和教度多边形拼图拼图:懒惰的餐饮模型,属性和求解器

Pictorial and apictorial polygonal jigsaw puzzles: The lazy caterer model, properties, and solvers

论文作者

Harel, Peleg, Ben-Shahar, Ohad

论文摘要

解决拼图拼图解决的问题是,从一组非重叠的无序视觉片段中构建一个连贯的整体问题,这是对众多应用的基础,但是过去二十年来的大多数文献都集中在迄今为止的较不现实的拼图上,这些难题的拼图是相同正方形的。在这里,我们正式化了一种新型的拼图拼图,其中零件是通过切割全球多边形/图像的一般凸多边形,并具有任意数量的直剪,这是受著名懒惰餐饮服务序列启发的一代模型。我们分析了此类难题的理论特性,包括一旦碎片被几何噪声污染,解决它们的固有挑战。为了应对此类困难并获得可进行的解决方案,我们将问题抽象为具有分层环约束和分层重建过程的多体弹簧质量动力学系统。我们定义评估指标,并在示波器和绘画难题上呈现实验结果,以表明它们可以完全自动解决。

Jigsaw puzzle solving, the problem of constructing a coherent whole from a set of non-overlapping unordered visual fragments, is fundamental to numerous applications and yet most of the literature of the last two decades has focused thus far on less realistic puzzles whose pieces are identical squares. Here we formalize a new type of jigsaw puzzle where the pieces are general convex polygons generated by cutting through a global polygonal shape/image with an arbitrary number of straight cuts, a generation model inspired by the celebrated Lazy caterer's sequence. We analyze the theoretical properties of such puzzles, including the inherent challenges in solving them once pieces are contaminated with geometrical noise. To cope with such difficulties and obtain tractable solutions, we abstract the problem as a multi-body spring-mass dynamical system endowed with hierarchical loop constraints and a layered reconstruction process. We define evaluation metrics and present experimental results on both apictorial and pictorial puzzles to show that they are solvable completely automatically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源