论文标题

轴对称域中Stokes方程近似的框架

A framework for approximation of the Stokes equations in an axisymmetric domain

论文作者

Ericsson, N.

论文摘要

我们开发了一个框架来解决轴对称域中的固定,不可压缩的Stokes方程。通过相对于角变量的傅立叶扩展,三维的Stokes问题将减少为等效的,可计数的二维问题。通过使用三维Sobolev规范的分解,我们为二维问题得出了自然变化空间,并表明变异配方均得到良好。我们分析了由于傅立叶截断而引起的误差,并得出结论,对于足够规律的数据,解决少数二维问题就足够了。

We develop a framework for solving the stationary, incompressible Stokes equations in an axisymmetric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By using decomposition of three-dimensional Sobolev norms we derive natural variational spaces for the two-dimensional problems, and show that the variational formulations are well-posed. We analyze the error due to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small number of two-dimensional problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源