论文标题
使用卷积神经网络进行音乐边界检测:联合输入特征的比较分析
Music Boundary Detection using Convolutional Neural Networks: A comparative analysis of combined input features
论文作者
论文摘要
对音乐作品结构的分析是一项对人工智能的挑战,尤其是在深度学习领域。它需要事先确定音乐作品的结构边界。最近已经使用无监督的方法和\ textIt {端到端}技术研究了这种结构边界分析,例如使用MEL量表的对数 - 磁性频谱特征(MLS),自相似矩阵(SSM)或自动含量lag nag Matrices(ssslmmmmrmms)(SSSLMMMMMM)和培训,诸如卷积神经网络(CNN)和SSSLMSLMM)和培训。已经发表了一些研究,分为无监督和\ textit {端到端}方法,其中使用不同的距离指标和音频特征以不同的方式进行预处理,因此缺少一种广义的计算模型输入的预处理方法。这项工作的目的是通过比较从不同的汇总策略,距离指标和音频特征中计算出的输入来建立一种预处理这些输入的通用方法,并考虑到获得它们的计算时间。我们还建立了要交付给CNN的最有效的投入组合,以建立最有效的方法来提取音乐作品结构的限制。通过将输入矩阵和汇总策略的足够组合组合在一起,我们获得了测量精度$ f_1 $ 0.411的$ f_1 $,表现优于在相同条件下获得的当前元素。
The analysis of the structure of musical pieces is a task that remains a challenge for Artificial Intelligence, especially in the field of Deep Learning. It requires prior identification of structural boundaries of the music pieces. This structural boundary analysis has recently been studied with unsupervised methods and \textit{end-to-end} techniques such as Convolutional Neural Networks (CNN) using Mel-Scaled Log-magnitude Spectograms features (MLS), Self-Similarity Matrices (SSM) or Self-Similarity Lag Matrices (SSLM) as inputs and trained with human annotations. Several studies have been published divided into unsupervised and \textit{end-to-end} methods in which pre-processing is done in different ways, using different distance metrics and audio characteristics, so a generalized pre-processing method to compute model inputs is missing. The objective of this work is to establish a general method of pre-processing these inputs by comparing the inputs calculated from different pooling strategies, distance metrics and audio characteristics, also taking into account the computing time to obtain them. We also establish the most effective combination of inputs to be delivered to the CNN in order to establish the most efficient way to extract the limits of the structure of the music pieces. With an adequate combination of input matrices and pooling strategies we obtain a measurement accuracy $F_1$ of 0.411 that outperforms the current one obtained under the same conditions.