论文标题
相位空间中多场随机膨胀的明显协变理论:解决随机通货膨胀的离散歧义
A manifestly covariant theory of multifield stochastic inflation in phase space: solving the discretisation ambiguity in stochastic inflation
论文作者
论文摘要
随机通货膨胀是一种有效的理论,描述了通过一组langevin方程来描述驱动通货膨胀的超黄体,粗粒的标量场。我们以前强调了在现场重新定义下不变的随机通胀理论的困难,以及与定义随机微分方程的离散化方案的歧义的联系。在本文中,我们通过使用满足一般协方差的Stratonovich离散化来解决这些“通货膨胀随机异常”的问题,并确定波动场的量子性质需要存在定义独立随机性的首选帧的存在。此外,我们得出了显然是协方差且非常适合数值计算的物理等效的ITô-Langevin方程。这些方程是在多场通货膨胀与曲面空间的一般环境中提出的,考虑到重力的耦合以及哈密顿语中的全相空间,但该分辨率也与简单的单场设置相关。我们还开发了这些方程式的路径综合派生,该方程解决了在经典运动方程式上提出的启发式方法的概念问题,并允许原则上对随机形式主义进行计算。使用Schwinger-keldysh形式主义,我们整合了小规模的波动,得出了描述其对粗粒田地影响的影响作用,并展示了如何解释产生的粗粒有效的汉密尔顿作用,从而得出了具有显着真实的实际noises的Langevin方程。尽管相应的动力学不是严格的马尔可夫人,但我们显示了当马尔可夫近似相关时,我们显示了域和力量函数的协变量,空间fokker-planck方程[...]
Stochastic inflation is an effective theory describing the super-Hubble, coarse-grained, scalar fields driving inflation, by a set of Langevin equations. We previously highlighted the difficulty of deriving a theory of stochastic inflation that is invariant under field redefinitions, and the link with the ambiguity of discretisation schemes defining stochastic differential equations. In this paper, we solve the issue of these "inflationary stochastic anomalies" by using the Stratonovich discretisation satisfying general covariance, and identifying that the quantum nature of the fluctuating fields entails the existence of a preferred frame defining independent stochastic noises. Moreover, we derive physically equivalent Itô-Langevin equations that are manifestly covariant and well suited for numerical computations. These equations are formulated in the general context of multifield inflation with curved field space, taking into account the coupling to gravity as well as the full phase space in the Hamiltonian language, but this resolution is also relevant in simpler single-field setups. We also develop a path-integral derivation of these equations, which solves conceptual issues of the heuristic approach made at the level of the classical equations of motion, and allows in principle to compute corrections to the stochastic formalism. Using the Schwinger-Keldysh formalism, we integrate out small-scale fluctuations, derive the influence action that describes their effects on the coarse-grained fields, and show how the resulting coarse-grained effective Hamiltonian action can be interpreted to derive Langevin equations with manifestly real noises. Although the corresponding dynamics is not rigorously Markovian, we show the covariant, phase-space Fokker-Planck equation for the Probability Density Function of fields and momenta when the Markovian approximation is relevant [...]