论文标题
学习创建更好的广告:广告创意改进的生成和排名方法
Learning to Create Better Ads: Generation and Ranking Approaches for Ad Creative Refinement
论文作者
论文摘要
在在线广告行业中,设计广告创意(即广告文本和图像)的过程需要手动劳动。通常,每个广告客户都通过在线A/B测试推出多个创意者,以推断目标受众的有效创意,然后以迭代方式进一步完善。由于此过程的手动性质,学习,完善和部署修改后的创意者非常耗时。由于主要的广告平台通常会对多个广告客户进行A/B测试,因此我们探讨了通过多个广告客户的A/B测试协作学习广告创意的可能性。特别是,给定输入广告创意,我们研究了通过以下方式完善给定的广告文本和图像的方法:(i)生成新的广告文本,(ii)为新广告文本推荐键形,以及(iii)推荐图像标签(图像中的对象)以选择新的广告图像。基于多个广告客户进行的A/B测试,我们形成了劣质和出色广告创意的成对示例,并使用此类对训练上述任务的模型。为了生成新的广告文本,我们演示了具有复制机制的编码器架构的功效,该架构允许将(下)输入文本中的某些单词复制到输出中,同时结合了与更高点击率相关的新单词。对于键形和图像标签建议任务,我们证明了与广告文本的相关性模型的功效以及排名方法的相对鲁棒性与在与看不见的广告客户的冷启动场景中相比。我们还使用Yahoo Gemini AD平台的数据从实验中分享了广泛适用的见解。
In the online advertising industry, the process of designing an ad creative (i.e., ad text and image) requires manual labor. Typically, each advertiser launches multiple creatives via online A/B tests to infer effective creatives for the target audience, that are then refined further in an iterative fashion. Due to the manual nature of this process, it is time-consuming to learn, refine, and deploy the modified creatives. Since major ad platforms typically run A/B tests for multiple advertisers in parallel, we explore the possibility of collaboratively learning ad creative refinement via A/B tests of multiple advertisers. In particular, given an input ad creative, we study approaches to refine the given ad text and image by: (i) generating new ad text, (ii) recommending keyphrases for new ad text, and (iii) recommending image tags (objects in image) to select new ad image. Based on A/B tests conducted by multiple advertisers, we form pairwise examples of inferior and superior ad creatives, and use such pairs to train models for the above tasks. For generating new ad text, we demonstrate the efficacy of an encoder-decoder architecture with copy mechanism, which allows some words from the (inferior) input text to be copied to the output while incorporating new words associated with higher click-through-rate. For the keyphrase and image tag recommendation task, we demonstrate the efficacy of a deep relevance matching model, as well as the relative robustness of ranking approaches compared to ad text generation in cold-start scenarios with unseen advertisers. We also share broadly applicable insights from our experiments using data from the Yahoo Gemini ad platform.