论文标题

具有和不具有共形对称性的高衍生理论的量子几何动力学

Quantum Geometrodynamics of Higher Derivative Theories with and without Conformal Symmetry

论文作者

Nikolic, Branislav

论文摘要

本论文的主要目的是量化在规范量化方法中通过二次曲率项扩展的爱因斯坦 - 希尔伯特作用,从而制定了较高衍生理论的量子几何动力学。动机是仅基于爱因斯坦 - 希尔伯特(Einstein-Hilbert)的作用提供标准规范量化的替代方案,因为后者并未在半经典限制中产生二次曲率项。采用了半经典近似方案的特殊表述,以确保在半经典极限下二次曲率项的影响变得扰动。这使经典的一般相对性完好无损,同时自然产生了其第一个半经典校正。感兴趣的另一个话题是一种古典理论,其中二次ricci标量和爱因斯坦 - 希尔伯特的术语不存在于该动作中,然后在田地的形式转换(本地Weyl Rescaling)方面享有对称性。我们特别注意这种情况,因为它为没有物理长度尺度的概念提供了自然的环境。本文还构建了某些有用的独立于模型的工具。首先,无量纲的坐标和度量标准的单模型分解用于揭示唯一的形式变体的自由度,从而使物理长度尺度的几何起源显而易见。通过这种方法,几个早期的结果变得更加透明。其次,使用单型符号变量,构建了与模型无关的结构磁场转换的生成器,并在其上给出了保形不变性定义的重新制定。第三,有人认为,一个规范的量化方案比一流的约束更有意义地基于相关转换的发生器的量化。

The main goal of this thesis is to quantize the Einstein-Hilbert action extended by the quadratic curvature terms within the canonical quantization approach, thus formulating quantum geometrodynamics of the higher derivative theories. The motivation is to provide an alternative to the standard canonical quantization based on the Einstein-Hilbert action alone, because the latter does not generate the quadratic curvature terms in the semiclassical limit. A particular formulation of a semiclassical approximation scheme is employed which ensures that the effects of the quadratic curvature terms become perturbative in the semiclassical limit. This leaves the classical General Relativity intact, while naturally giving rise to its first semiclassical corrections. Another topic of interest is a classical theory where the quadratic Ricci scalar and the Einstein-Hilbert term are absent from the action, which then enjoys the symmetry with respect to the conformal transformation of fields (local Weyl rescaling). We pay a special attention to this case, since it provides a natural setting for the absence of the notion of a physical length scale. Certain useful model-independent tools are also constructed in this thesis. Firstly, dimensionless coordinates and the unimodular decomposition of the metric are used to expose the only conformally variant degree of freedom, making the geometrical origin of the physical length scale apparent. With such an approach several earlier results become much more transparent. Secondly, using unimodular-conformal variables a model-independent generator of conformal field transformations is constructed in terms of which a reformulation of the definition of conformal invariance is given. Thirdly, it is argued that a canonical quantization scheme makes more sense to be based on the quantization of generators of relevant transformations, than on first class constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源