论文标题

动态减少哈密顿系统的基础方法

Dynamical reduced basis methods for Hamiltonian systems

论文作者

Pagliantini, Cecilia

论文摘要

我们考虑减少描述非隔离现象的参数化汉密尔顿系统的模型阶,例如波型和运输主导的问题。这种模型的减少基础方法的开发受到了两个主要因素的挑战:编码动力学的物理和稳定性及其局部低级性质的丰富几何结构。为了解决这些方面,我们提出了一个非线性结构的模型还原,其中减少的相空间会随着时间的流逝而发展。本着动态低级别近似的精神,通过对汉密尔顿矢量场的符号投影在每个还原状态下的近似歧管的切线空间中获得了还原的动力学。根据整个模型解决方案的投影误差在还原的歧管上建立了先验误差估计。对于减少动力学的时间离散,我们采用了分裂技术。减少的基础满足了具有一个尺寸等于完整模型的大小的符号和正交矩形矩阵的歧管上的进化方程。我们在基质歧管的切线空间上重新阐述了问题,并根据Lie组技术以及显式Runge-Kutta(RK)方案开发了内在的颞整合体。结果表明,所得的方法与RK积分器的顺序收敛,并且它们的计算复杂性仅依赖于整个模型的维度,前提是对降低流速的评估具有可比的成本。

We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the rich geometric structure encoding the physical and stability properties of the dynamics and its local low-rank nature. To address these aspects, we propose a nonlinear structure-preserving model reduction where the reduced phase space evolves in time. In the spirit of dynamical low-rank approximation, the reduced dynamics is obtained by a symplectic projection of the Hamiltonian vector field onto the tangent space of the approximation manifold at each reduced state. A priori error estimates are established in terms of the projection error of the full model solution onto the reduced manifold. For the temporal discretization of the reduced dynamics we employ splitting techniques. The reduced basis satisfies an evolution equation on the manifold of symplectic and orthogonal rectangular matrices having one dimension equal to the size of the full model. We recast the problem on the tangent space of the matrix manifold and develop intrinsic temporal integrators based on Lie group techniques together with explicit Runge-Kutta (RK) schemes. The resulting methods are shown to converge with the order of the RK integrator and their computational complexity depends only linearly on the dimension of the full model, provided the evaluation of the reduced flow velocity has a comparable cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源