论文标题
使用计算机视觉改善飓风季节的紧急响应
Improving Emergency Response during Hurricane Season using Computer Vision
论文作者
论文摘要
我们已经开发了危机响应和管理的框架,该框架结合了计算机视觉中的最新技术(CV),内陆洪水预测,损害评估和数据可视化。该框架使用在危机之前,期间和之后收集的数据来实现灾难响应的所有阶段中的快速而明智的决策。我们的计算机视觉模型分析了Spaceborne和空降图像,以检测自然灾害期间和之后的相关功能,并创建元数据,并通过可通过Web访问的映射工具转化为可行的信息。特别是,我们设计了一系列模型,以识别图像中的水,道路,建筑物和植被等特征。我们通过添加包括OpenStreetMaps(OpenStreetMaps)(包括OpenStreetMaps)的使用以及添加互补数据源(包括最近的排水(手)高度(手)作为网络输入中的侧面通道,以鼓励其对其他功能的其他特征对视觉特征的方式,包括互补的数据源,包括openstreetMaps(包括OpenStreetMaps)以及添加互补的数据源,从而减少了对大型数据注释工作的依赖,并减少了对大型数据注释工作的依赖。建模工作包括(1)语义分割,(2)洪水线检测和(3)损伤评估的连接的U-NET的修改。特别是对于损害评估的情况,我们在U-NET中添加了第二个编码器,以便它可以同时学习事前和事后的图像特征。通过这种方法,网络能够学习前污液前和后架图像之间的差异,因此更有效地对损害水平进行了分类。我们已经使用国家海洋和大气管理局(NOAA)的遥感部门的公开数据验证了我们的方法,该数据将城市和街道级别的细节显示为镶嵌图像图像,以及作为XView2挑战的一部分发布的数据。
We have developed a framework for crisis response and management that incorporates the latest technologies in computer vision (CV), inland flood prediction, damage assessment and data visualization. The framework uses data collected before, during, and after the crisis to enable rapid and informed decision making during all phases of disaster response. Our computer-vision model analyzes spaceborne and airborne imagery to detect relevant features during and after a natural disaster and creates metadata that is transformed into actionable information through web-accessible mapping tools. In particular, we have designed an ensemble of models to identify features including water, roads, buildings, and vegetation from the imagery. We have investigated techniques to bootstrap and reduce dependency on large data annotation efforts by adding use of open source labels including OpenStreetMaps and adding complementary data sources including Height Above Nearest Drainage (HAND) as a side channel to the network's input to encourage it to learn other features orthogonal to visual characteristics. Modeling efforts include modification of connected U-Nets for (1) semantic segmentation, (2) flood line detection, and (3) for damage assessment. In particular for the case of damage assessment, we added a second encoder to U-Net so that it could learn pre-event and post-event image features simultaneously. Through this method, the network is able to learn the difference between the pre- and post-disaster images, and therefore more effectively classify the level of damage. We have validated our approaches using publicly available data from the National Oceanic and Atmospheric Administration (NOAA)'s Remote Sensing Division, which displays the city and street-level details as mosaic tile images as well as data released as part of the Xview2 challenge.