论文标题

具有快速再培训的深层网络

Deep Networks with Fast Retraining

论文作者

Zhang, Wandong, Yang, Yimin, Wu, Jonathan

论文摘要

最近的工作[1]利用了深卷积神经网络(DCNN)学习中的摩尔 - 苯甲酸(MP)逆,该学习通过随机梯度下降(SGD)管道实现了比DCNN更好的概括性能。但是,杨的工作在实践中并没有在实践中获得太大的知名度,因为它对超参数的敏感性很高以及对计算资源的严格要求。为了增强其适用性,本文提出了一种新型的MP基于基于逆的快速再培训策略。在每个训练时期,首先使用了一个随机学习策略,该策略控制在向后通过的卷积层数量。然后,开发了一个基于MP逆批量的学习策略,该策略可以在不访问工业规模的计算资源的情况下实现网络,以完善密集的层参数。实验结果从经验上表明,快速撤回是可用于所有DCNN的统一策略。与其他学习策略相比,提议的学习管道对超参数具有鲁棒性,并且计算资源的要求大大减少了。 [1] Y. Yang,J。Wu,X。Feng和A. Thangarajah,“ dcnn的Perfor-238mance改进的致密层的重新成分”,IEEE Trans。模式肛门。马赫。 Intell。,2019。

Recent work [1] has utilized Moore-Penrose (MP) inverse in deep convolutional neural network (DCNN) learning, which achieves better generalization performance over the DCNN with a stochastic gradient descent (SGD) pipeline. However, Yang's work has not gained much popularity in practice due to its high sensitivity of hyper-parameters and stringent demands of computational resources. To enhance its applicability, this paper proposes a novel MP inverse-based fast retraining strategy. In each training epoch, a random learning strategy that controls the number of convolutional layers trained in the backward pass is first utilized. Then, an MP inverse-based batch-by-batch learning strategy, which enables the network to be implemented without access to industrial-scale computational resources, is developed to refine the dense layer parameters. Experimental results empirically demonstrate that fast retraining is a unified strategy that can be used for all DCNNs. Compared to other learning strategies, the proposed learning pipeline has robustness against the hyper-parameters, and the requirement of computational resources is significantly reduced. [1] Y. Yang, J. Wu, X. Feng, and A. Thangarajah, "Recomputation of dense layers for the perfor-238mance improvement of dcnn," IEEE Trans. Pattern Anal. Mach. Intell., 2019.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源