论文标题

完整图上的fortuin-kasteleyn ising模型中的渗透效应

Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph

论文作者

Fang, Sheng, Zhou, Zongzheng, Deng, Youjin

论文摘要

fortuin-kasteleyn(fk)随机群集模型,可以从$ q $ - 状态potts旋转模型中精确映射,是一个相关的键渗透模型。通过广泛的蒙特卡洛模拟,我们研究了有限完整图,即平均场iSing模型的关键ISING模型($ Q = 2 $)的FK键表示。我们提供了有力的数值证据,表明$ Q = 2 $的配置空间包含一个渐近消失的扇区,在该扇区中,数量与完整图上的关键不相关的键渗透($ q = 1 $)中的数量显示出相同的有限尺寸缩放缩放。此外,我们观察到,在完整的配置空间中,FK Ising群集的集群大小分布的幂律行为除外,最大的群集由Fisher指数支配,以$ q = 1 $而不是$ q = 2 $,以$ q = 1 $。这证明了完整图上的FK Ising模型中的渗透效应。

The Fortuin-Kasteleyn (FK) random cluster model, which can be exactly mapped from the $q$-state Potts spin model, is a correlated bond percolation model. By extensive Monte Carlo simulations, we study the FK bond representation of the critical Ising model ($q=2$) on a finite complete graph, i.e. the mean-field Ising model. We provide strong numerical evidence that the configuration space for $q=2$ contains an asymptotically vanishing sector in which quantities exhibit the same finite-size scaling as in the critical uncorrelated bond percolation ($q=1$) on the complete graph. Moreover, we observe that in the full configuration space, the power-law behaviour of the cluster-size distribution for the FK Ising clusters except the largest one is governed by a Fisher exponent taking the value for $q=1$ instead of $q=2$. This demonstrates the percolation effects in the FK Ising model on the complete graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源